Spaces:
Sleeping
Sleeping
File size: 6,919 Bytes
b3931e0 eb035cc b3931e0 5bfb1a0 b3931e0 ba9b23b eb035cc b3931e0 ba9b23b b3931e0 ba9b23b 1c336cb eb035cc ba9b23b 1c336cb 469f0e5 eb035cc 1c336cb eb035cc b3931e0 ba9b23b 5bfb1a0 b3931e0 5bfb1a0 b3931e0 ba9b23b b3931e0 5bfb1a0 ba9b23b b3931e0 9759e24 b3931e0 eb035cc ba9b23b 9759e24 b3931e0 ba9b23b eb035cc 9759e24 eb035cc b3931e0 9759e24 ba9b23b b3931e0 ba9b23b b3931e0 ba9b23b b3931e0 ba9b23b b3931e0 ba9b23b b3931e0 ba9b23b b3931e0 eb035cc b3931e0 5bfb1a0 b3931e0 eb035cc ba9b23b b3931e0 ba9b23b b3931e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import streamlit as st
import os
import librosa
import torch
from pydub import AudioSegment
from pydub.silence import split_on_silence
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile
import math
from docx import Document
import time
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Load environment variables from .env file (if needed for other config)
load_dotenv()
# Create a placeholder for status messages
status_placeholder = st.empty()
# Display status while loading the model
status_placeholder.info("Loading Whisper model from Hugging Face...")
@st.cache_resource
def load_whisper_model():
"""
Load the Whisper model and processor from Hugging Face.
Change 'openai/whisper-base' to another variant if needed.
"""
model_name = "openai/whisper-Small"
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name)
return processor, model
processor, model = load_whisper_model()
status_placeholder.info("Whisper model loaded successfully!")
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
"""
Split an audio file into chunks using silence detection.
"""
status_placeholder.info("Splitting audio on silence...")
audio = AudioSegment.from_file(audio_file_path)
chunks = split_on_silence(
audio,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh,
keep_silence=keep_silence
)
status_placeholder.info(f"Audio split into {len(chunks)} chunks.")
return chunks
# def transcribe(audio_file):
# """
# Transcribe an audio file using the locally loaded Whisper model from Hugging Face.
# This uses librosa to load and resample the audio as required.
# """
# # Load audio with librosa at 16kHz (as required by Whisper)
# speech, sr = librosa.load(audio_file, sr=16000)
# input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
# predicted_ids = model.generate(input_features)
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# return transcription
def transcribe(audio_file):
"""
Transcribe an audio file using the locally loaded Whisper model from Hugging Face.
This uses librosa to load and resample the audio as required.
The transcription is forced to be in English.
Args:
audio_file (str): Path to the audio file.
Returns:
str: Transcribed text in English.
"""
# Load audio with librosa at 16kHz (as required by Whisper)
speech, sr = librosa.load(audio_file, sr=16000)
input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
# Force the transcription output to be in English:
forced_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_ids)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def transcribe_chunk(chunk, index, min_length_ms=100):
"""
Transcribe an individual audio chunk.
"""
if len(chunk) < min_length_ms:
st.warning(f"Chunk {index} is too short to be processed.")
return (index, "")
# Save chunk temporarily as a WAV file
with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
temp_audio_file_path = temp_audio_file.name
status_placeholder.info(f"Transcribing chunk {index}...")
transcription = transcribe(temp_audio_file_path)
os.remove(temp_audio_file_path)
st.write(f"Transcription for chunk {index}: {transcription}")
return (index, transcription)
def process_audio_chunks(audio_chunks):
"""
Process and transcribe each audio chunk in sequence.
Reports the total time taken.
"""
transcriptions = []
min_length_ms = 100 # minimum duration for processing
start_transcription = time.time()
for i, chunk in enumerate(audio_chunks):
index, text = transcribe_chunk(chunk, i, min_length_ms)
transcriptions.append((index, text))
transcriptions.sort(key=lambda x: x[0])
total_time = time.time() - start_transcription
status_placeholder.info(f"All chunks transcribed in {total_time:.2f} seconds.")
combined = " ".join([text for idx, text in transcriptions])
return combined
def save_transcription_to_docx(transcription, audio_file_path):
"""
Save the transcription as a .docx file.
"""
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
output_file_name = f"{base_name}_full_transcription.docx"
status_placeholder.info("Saving transcription to DOCX...")
doc = Document()
doc.add_paragraph(transcription)
doc.save(output_file_name)
status_placeholder.info("Transcription saved as DOCX.")
return output_file_name
st.title("Audio Transcription with Whisper (Local via Hugging Face)")
# Allow uploading of audio or video files
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])
if 'transcription' not in st.session_state:
st.session_state.transcription = None
if uploaded_file is not None and st.session_state.transcription is None:
st.audio(uploaded_file)
# Save uploaded file temporarily
file_extension = uploaded_file.name.split(".")[-1]
temp_audio_file = f"temp_audio_file.{file_extension}"
with open(temp_audio_file, "wb") as f:
f.write(uploaded_file.getbuffer())
processing_start = time.time()
with st.spinner('Processing audio...'):
audio_chunks = split_audio_on_silence(temp_audio_file)
transcription = process_audio_chunks(audio_chunks)
if transcription:
st.session_state.transcription = transcription
st.success('Transcription complete!')
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
st.session_state.output_docx_file = output_docx_file
processing_duration = time.time() - processing_start
status_placeholder.info(f"Total processing time: {processing_duration:.2f} seconds.")
if os.path.exists(temp_audio_file):
os.remove(temp_audio_file)
if st.session_state.transcription:
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
with open(st.session_state.output_docx_file, "rb") as docx_file:
st.download_button(
label="Download Transcription (.docx)",
data=docx_file,
file_name=st.session_state.output_docx_file,
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
)
|