AudioBot / app.py
Deepakkori45's picture
Update app.py
eeadc49 verified
import streamlit as st
import os
import librosa
import torch
from pydub import AudioSegment
from pydub.silence import split_on_silence
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile
import math
from docx import Document
import time
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Load environment variables from .env file (if needed for other config)
load_dotenv()
# Create a placeholder for status messages
status_placeholder = st.empty()
# Display status while loading the model
status_placeholder.info("Loading Whisper model from Hugging Face...")
@st.cache_resource
def load_whisper_model():
"""
Load the Whisper model and processor from Hugging Face.
Change 'openai/whisper-small' to another variant if needed.
"""
model_name = "openai/whisper-small" # You can change to "tiny", "base", "medium", or "large" based on resources.
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name)
return processor, model
processor, model = load_whisper_model()
status_placeholder.info("Whisper model loaded successfully!")
# Comprehensive dictionary of languages supported by Whisper (most common ones)
LANGUAGES = {
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French",
"ja": "Japanese",
"pt": "Portuguese",
"tr": "Turkish",
"pl": "Polish",
"ca": "Catalan",
"nl": "Dutch",
"ar": "Arabic",
"sv": "Swedish",
"it": "Italian",
"id": "Indonesian",
"hi": "Hindi",
"fi": "Finnish",
"vi": "Vietnamese",
"fa": "Persian",
"mr": "Marathi",
"uk": "Ukrainian",
"el": "Greek",
"ms": "Malay",
"cs": "Czech",
"ro": "Romanian",
"da": "Danish",
"hu": "Hungarian",
"ta": "Tamil",
"no": "Norwegian",
"th": "Thai",
"ur": "Urdu",
"hr": "Croatian",
"bg": "Bulgarian",
"lt": "Lithuanian",
"la": "Latin",
"mi": "Maori",
"ml": "Malayalam",
"cy": "Welsh",
"sk": "Slovak",
"te": "Telugu",
"ka": "Georgian",
"sl": "Slovenian",
"kn": "Kannada",
"et": "Estonian",
"mk": "Macedonian",
"br": "Breton",
"eu": "Basque",
"is": "Icelandic",
"hy": "Armenian",
"af": "Afrikaans"
}
# Create a sorted list of language names for the selectbox
language_names = sorted(LANGUAGES.values())
default_language = "English" # Default language
selected_lang_name = st.selectbox("Select transcription language", language_names, index=language_names.index(default_language))
# Find the language code by reverse lookup in LANGUAGES
selected_language = [code for code, name in LANGUAGES.items() if name == selected_lang_name][0]
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
"""
Split an audio file into chunks using silence detection.
"""
status_placeholder.info("Splitting audio on silence...")
audio = AudioSegment.from_file(audio_file_path)
chunks = split_on_silence(
audio,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh,
keep_silence=keep_silence
)
status_placeholder.info(f"Audio split into {len(chunks)} chunks.")
return chunks
def transcribe(audio_file, language):
"""
Transcribe an audio file using the locally loaded Whisper model from Hugging Face.
This uses librosa to load and resample the audio as required.
The transcription is forced to the specified language.
Args:
audio_file (str): Path to the audio file.
language (str): Language code (e.g., "en", "es").
Returns:
str: Transcribed text.
"""
# Load audio with librosa at 16kHz (as required by Whisper)
speech, sr = librosa.load(audio_file, sr=16000)
input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features
# Force the transcription output to the chosen language:
forced_ids = processor.get_decoder_prompt_ids(language=language, task="transcribe")
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_ids)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def transcribe_chunk(chunk, index, language, min_length_ms=100):
"""
Transcribe an individual audio chunk.
"""
if len(chunk) < min_length_ms:
st.warning(f"Chunk {index} is too short to be processed.")
return (index, "")
# Save chunk temporarily as a WAV file
with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
temp_audio_file_path = temp_audio_file.name
status_placeholder.info(f"Transcribing chunk {index} in {selected_lang_name}...")
transcription = transcribe(temp_audio_file_path, language)
os.remove(temp_audio_file_path)
st.write(f"Transcription for chunk {index}: {transcription}")
return (index, transcription)
def process_audio_chunks(audio_chunks, language):
"""
Process and transcribe each audio chunk in sequence.
Reports the total time taken.
"""
transcriptions = []
min_length_ms = 100 # minimum duration for processing
start_transcription = time.time()
for i, chunk in enumerate(audio_chunks):
index, text = transcribe_chunk(chunk, i, language, min_length_ms)
transcriptions.append((index, text))
transcriptions.sort(key=lambda x: x[0])
total_time = time.time() - start_transcription
status_placeholder.info(f"All chunks transcribed in {total_time:.2f} seconds.")
combined = " ".join([text for idx, text in transcriptions])
return combined
def save_transcription_to_docx(transcription, audio_file_path):
"""
Save the transcription as a .docx file.
"""
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
output_file_name = f"{base_name}_full_transcription.docx"
status_placeholder.info("Saving transcription to DOCX...")
doc = Document()
doc.add_paragraph(transcription)
doc.save(output_file_name)
status_placeholder.info("Transcription saved as DOCX.")
return output_file_name
st.title("Audio Transcription with Whisper (Local via Hugging Face)")
# Allow uploading of audio or video files
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])
if 'transcription' not in st.session_state:
st.session_state.transcription = None
if uploaded_file is not None and st.session_state.transcription is None:
st.audio(uploaded_file)
# Save uploaded file temporarily
file_extension = uploaded_file.name.split(".")[-1]
temp_audio_file = f"temp_audio_file.{file_extension}"
with open(temp_audio_file, "wb") as f:
f.write(uploaded_file.getbuffer())
processing_start = time.time()
with st.spinner('Processing audio...'):
audio_chunks = split_audio_on_silence(temp_audio_file)
transcription = process_audio_chunks(audio_chunks, selected_language)
if transcription:
st.session_state.transcription = transcription
st.success('Transcription complete!')
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
st.session_state.output_docx_file = output_docx_file
processing_duration = time.time() - processing_start
status_placeholder.info(f"Total processing time: {processing_duration:.2f} seconds.")
if os.path.exists(temp_audio_file):
os.remove(temp_audio_file)
if st.session_state.transcription:
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
with open(st.session_state.output_docx_file, "rb") as docx_file:
st.download_button(
label="Download Transcription (.docx)",
data=docx_file,
file_name=st.session_state.output_docx_file,
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
)