Spaces:
Sleeping
Sleeping
File size: 4,758 Bytes
6357e8e f179f1d 6357e8e f179f1d 6357e8e f179f1d 6357e8e f179f1d 6357e8e f179f1d 9c52f94 6357e8e 9c52f94 6357e8e f179f1d 0ccdb83 6357e8e f179f1d 6357e8e f179f1d 6357e8e f179f1d 0ccdb83 f179f1d 0ccdb83 f179f1d 0ccdb83 f179f1d 9c52f94 0ccdb83 f179f1d 0ccdb83 f179f1d 0ccdb83 f179f1d 6357e8e 9c52f94 6357e8e 9c52f94 6357e8e f179f1d 6357e8e f179f1d d9bb5f4 f179f1d 6357e8e f179f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import gradio as gr
import torch
import logging
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import PyMuPDFLoader # β
More stable PDF loader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
# Setup Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set Hugging Face Cache Directory
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
# Check for GPU availability
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# Global variables
conversation_retrieval_chain = None
chat_history = []
llm_pipeline = None
embeddings = None
persist_directory = "/tmp/chroma_db" # Storage for vector DB
def init_llm():
"""Initialize LLM and Embeddings"""
global llm_pipeline, embeddings
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
model_id = "tiiuae/falcon-rw-1b" # β
Can switch to "tiiuae/falcon-rw-1b" for lighter model
hf_pipeline = pipeline(
"text-generation",
model=model_id,
device=DEVICE,
max_new_tokens=512 # Increase this as needed
)
llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": DEVICE}
)
logger.info("β
LLM and Embeddings Initialized Successfully!")
def process_document(file):
"""Process uploaded PDF and create a retriever"""
global conversation_retrieval_chain
if not llm_pipeline or not embeddings:
init_llm()
try:
file_path = file.name # β
Ensures correct file path is passed
logger.info(f"π Processing PDF: {file_path}")
loader = PyMuPDFLoader(file_path) # β
Alternative loader for stability
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts = text_splitter.split_documents(documents)
# Load or create ChromaDB
db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory)
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 6})
conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
llm=llm_pipeline, retriever=retriever
)
logger.info("β
PDF Processed Successfully!")
return "π PDF uploaded and processed successfully! You can now ask questions."
except Exception as e:
logger.error(f"β Error processing PDF: {str(e)}")
return f"β Error processing PDF: {str(e)}"
def process_prompt(prompt, chat_history_display):
"""Generate a response using the retrieval chain"""
global conversation_retrieval_chain, chat_history
if not conversation_retrieval_chain:
return chat_history_display + [("β No document uploaded.", "Please upload a PDF first.")]
output = conversation_retrieval_chain.invoke({"question": prompt, "chat_history": chat_history})
answer = output["answer"]
chat_history.append((prompt, answer))
return answer
# Define Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>Personal Data Assistant</h1>")
with gr.Row():
dark_mode = gr.Checkbox(label="π Toggle light/dark mode")
with gr.Column():
gr.Markdown("Hello there! I'm your friendly data assistant, ready to answer any questions regarding your data. Could you please upload a PDF file for me to analyze?")
file_input = gr.File(label="Upload File")
upload_button = gr.Button("π Upload File")
status_output = gr.Textbox(label="Status", interactive=False)
chat_history_display = gr.Chatbot(label="Chat History")
with gr.Row():
user_input = gr.Textbox(placeholder="Type your message here...", scale=4)
submit_button = gr.Button("π©", scale=1)
clear_button = gr.Button("π", scale=1)
# Button Click Actions
upload_button.click(process_document, inputs=file_input, outputs=status_output)
submit_button.click(process_prompt, inputs=[user_input, chat_history_display], outputs=chat_history_display)
clear_button.click(lambda: [], outputs=chat_history_display)
# Launch Gradio App
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) # β
Works in Hugging Face Spaces |