File size: 4,758 Bytes
6357e8e
 
 
f179f1d
6357e8e
 
f179f1d
6357e8e
 
 
 
 
f179f1d
 
 
 
6357e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f179f1d
6357e8e
 
 
f179f1d
 
9c52f94
 
 
 
 
 
 
6357e8e
9c52f94
6357e8e
 
 
 
f179f1d
0ccdb83
6357e8e
f179f1d
6357e8e
f179f1d
6357e8e
 
f179f1d
0ccdb83
f179f1d
 
0ccdb83
f179f1d
 
 
0ccdb83
 
f179f1d
 
9c52f94
0ccdb83
 
f179f1d
0ccdb83
f179f1d
0ccdb83
 
 
f179f1d
 
6357e8e
 
 
 
 
 
 
 
9c52f94
6357e8e
 
 
9c52f94
6357e8e
 
 
 
f179f1d
6357e8e
 
 
f179f1d
d9bb5f4
 
 
f179f1d
6357e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f179f1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import gradio as gr
import torch
import logging
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import PyMuPDFLoader  # βœ… More stable PDF loader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline

# Setup Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set Hugging Face Cache Directory
os.environ["HF_HOME"] = "/tmp/huggingface_cache"

# Check for GPU availability
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"

# Global variables
conversation_retrieval_chain = None
chat_history = []
llm_pipeline = None
embeddings = None
persist_directory = "/tmp/chroma_db"  # Storage for vector DB

def init_llm():
    """Initialize LLM and Embeddings"""
    global llm_pipeline, embeddings
    
    hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
    if not hf_token:
        raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
    
    model_id = "tiiuae/falcon-rw-1b"  # βœ… Can switch to "tiiuae/falcon-rw-1b" for lighter model
    hf_pipeline = pipeline(
    "text-generation",
    model=model_id,
    device=DEVICE,
    max_new_tokens=512  # Increase this as needed
    )

    llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)

    embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2",
        model_kwargs={"device": DEVICE}
    )
    logger.info("βœ… LLM and Embeddings Initialized Successfully!")

def process_document(file):
    """Process uploaded PDF and create a retriever"""
    global conversation_retrieval_chain
    
    if not llm_pipeline or not embeddings:
        init_llm()
    
    try:
        file_path = file.name  # βœ… Ensures correct file path is passed
        logger.info(f"πŸ“‚ Processing PDF: {file_path}")

        loader = PyMuPDFLoader(file_path)  # βœ… Alternative loader for stability
        documents = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
        texts = text_splitter.split_documents(documents)

        # Load or create ChromaDB
        db = Chroma.from_documents(texts, embedding=embeddings, persist_directory=persist_directory)
        retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 6})

        conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
            llm=llm_pipeline, retriever=retriever
        )
        logger.info("βœ… PDF Processed Successfully!")
        return "πŸ“„ PDF uploaded and processed successfully! You can now ask questions."
    
    except Exception as e:
        logger.error(f"❌ Error processing PDF: {str(e)}")
        return f"❌ Error processing PDF: {str(e)}"

def process_prompt(prompt, chat_history_display):
    """Generate a response using the retrieval chain"""
    global conversation_retrieval_chain, chat_history

    if not conversation_retrieval_chain:
        return chat_history_display + [("❌ No document uploaded.", "Please upload a PDF first.")]

    output = conversation_retrieval_chain.invoke({"question": prompt, "chat_history": chat_history})
    answer = output["answer"]

    chat_history.append((prompt, answer))
    return answer

# Define Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("<h1 style='text-align: center;'>Personal Data Assistant</h1>")
    
    with gr.Row():
        dark_mode = gr.Checkbox(label="πŸŒ™ Toggle light/dark mode")
    
    with gr.Column():
        gr.Markdown("Hello there! I'm your friendly data assistant, ready to answer any questions regarding your data. Could you please upload a PDF file for me to analyze?")
        file_input = gr.File(label="Upload File")
        upload_button = gr.Button("πŸ“‚ Upload File")
    
    status_output = gr.Textbox(label="Status", interactive=False)
    chat_history_display = gr.Chatbot(label="Chat History")
    
    with gr.Row():
        user_input = gr.Textbox(placeholder="Type your message here...", scale=4)
        submit_button = gr.Button("πŸ“©", scale=1)
        clear_button = gr.Button("πŸ”„", scale=1)

    # Button Click Actions
    upload_button.click(process_document, inputs=file_input, outputs=status_output)
    submit_button.click(process_prompt, inputs=[user_input, chat_history_display], outputs=chat_history_display)
    clear_button.click(lambda: [], outputs=chat_history_display)

# Launch Gradio App
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)  # βœ… Works in Hugging Face Spaces