Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.llms import HuggingFaceHub | |
from langchain.memory import ConversationBufferMemory | |
def make_vectorstore(embeddings): | |
loader = PyPDFDirectoryLoader("data") | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=1400, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
docsearch = FAISS.from_documents(texts, embeddings) | |
return docsearch | |
def get_qa(vectorstore, llmb): | |
qa = RetrievalQA.from_chain_type( | |
llm=llmb, | |
chain_type="stuff", | |
retriever=vectorstore.as_retriever()) | |
return qa | |
def get_response(qa, query): | |
response = qa.run(query) | |
return response | |
def main(): | |
st.title("BetterZila RAG Enabled LLM") | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}, huggingfacehub_api_token = st.secrets["hf_token"]) | |
embeddings = HuggingFaceInstructEmbeddings(model_name="google/t5-v1_1-xl", model_kwargs = {'device': 'cpu'}) | |
vectorstore = make_vectorstore(embeddings) | |
qa = get_qa(vectorstore, llm) | |
queries = ["Can you give me an example from history where the enemy was crushed totally from the book?", "What's the point of making myself less accessible?", "Can you tell me the story of Queen Elizabeth I from this 48 laws of power book?"] | |
for query in queries: | |
st.subheader(f"Query: {query}") | |
response = get_response(qa, query) | |
st.write(query) | |
st.write(response) | |
st.success("Responses generated!") | |
if __name__ == "__main__": | |
main() |