Spaces:
Running
Running
# Evaluation | |
## MiniCPM-V 2.6 | |
### opencompass | |
First, enter the `vlmevalkit` directory and install all dependencies: | |
```bash | |
cd vlmevalkit | |
pip install --upgrade pip | |
pip install -e . | |
wget https://download.pytorch.org/whl/cu118/torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=4377e0a7fe8ff8ffc4f7c9c6130c1dcd3874050ae4fc28b7ff1d35234fbca423 | |
wget https://download.pytorch.org/whl/cu118/torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=2e63d62e09d9b48b407d3e1b30eb8ae4e3abad6968e8d33093b60d0657542428 | |
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl | |
pip install torch-2.2.0%2Bcu118-cp310-cp310-linux_x86_64.whl | |
pip install torchvision-0.17.0%2Bcu118-cp310-cp310-linux_x86_64.whl | |
pip install flash_attn-2.6.3+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl | |
``` | |
<br /> | |
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode: | |
```bash | |
chmod +x ./scripts/run_inference.sh | |
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE | |
``` | |
<br /> | |
The four available choices for `MODELNAME` are listed in `vlmeval/config.py`: | |
```bash | |
minicpm_series = { | |
'MiniCPM-V': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), | |
'MiniCPM-V-2': partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), | |
'MiniCPM-Llama3-V-2_5': partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), | |
'MiniCPM-V-2_6': partial(MiniCPM_V_2_6, model_path='openbmb/MiniCPM-V-2_6'), | |
} | |
``` | |
<br /> | |
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. Separate the names of different datasets with spaces and add quotation marks at both ends: | |
```bash | |
$DATALIST="MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" | |
``` | |
<br /> | |
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and HallusionBench), you need to run the script according to the following settings: | |
```bash | |
# without CoT | |
./scripts/run_inference.sh MiniCPM-V-2_6 "MMMU_DEV_VAL MathVista_MINI MMVet MMBench_DEV_EN_V11 MMBench_DEV_CN_V11 MMStar HallusionBench AI2D_TEST" all | |
./scripts/run_inference.sh MiniCPM-V-2_6 MME all | |
# with CoT | |
# While running the CoT version of MME, you need to modify the 'use_cot' function in vlmeval/vlm/minicpm_v.py and add MME to the branch that returns True. | |
./scripts/run_inference/sh MiniCPM-V-2_6 "MMMU_DEV_VAL MMVet MMStar HallusionBench OCRBench" all | |
./scripts/run_inference.sh MiniCPM-V-2_6 MME all | |
``` | |
<br /> | |
### vqadataset | |
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks: | |
```bash | |
cd vqaeval | |
pip install -r requirements.txt | |
mkdir downloads | |
``` | |
<br /> | |
Download the datasets from the following links and place it in the specified directories: | |
###### TextVQA | |
```bash | |
cd downloads | |
mkdir TextVQA && cd TextVQA | |
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip | |
unzip train_val_images.zip && rm train_val_images.zip | |
mv train_val_images/train_images . && rm -rf train_val_images | |
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json | |
cd ../.. | |
``` | |
###### DocVQA / DocVQATest | |
```bash | |
cd downloads | |
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images | |
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads | |
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory | |
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz | |
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip | |
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas | |
cd ../.. | |
``` | |
<br /> | |
The `downloads` directory should be organized according to the following structure: | |
```bash | |
downloads | |
βββ TextVQA | |
β βββ train_images | |
β β βββ ... | |
β βββ TextVQA_0.5.1_val.json | |
βββ DocVQA | |
β βββ spdocvqa_images | |
β β βββ ... | |
β βββ val_v1.0_withQT.json | |
β βββ test_v1.0.json | |
``` | |
<br /> | |
Modify the parameters in `shell/run_inference.sh` and run inference: | |
```bash | |
chmod +x ./shell/run_inference.sh | |
./shell/run_inference.sh | |
``` | |
<br /> | |
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows. | |
For `MiniCPM-V-2_6`, set `model_name` to `minicpmv26`: | |
```bash | |
# path to images and their corresponding questions | |
# TextVQA | |
--textVQA_image_dir | |
--textVQA_ann_path | |
# DocVQA | |
--docVQA_image_dir | |
--docVQA_ann_path | |
# DocVQATest | |
--docVQATest_image_dir | |
--docVQATest_ann_path | |
# whether to eval on certain task | |
--eval_textVQA | |
--eval_docVQA | |
--eval_docVQATest | |
--eval_all | |
# model name and model path | |
--model_name | |
--model_path | |
# load model from ckpt | |
--ckpt | |
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved. | |
--generate_method | |
--batchsize | |
# path to save the outputs | |
--answer_path | |
``` | |
<br /> | |
While evaluating on different tasks, parameters need to be set as follows: | |
###### TextVQA | |
```bash | |
--eval_textVQA | |
--textVQA_image_dir ./downloads/TextVQA/train_images | |
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json | |
``` | |
###### DocVQA | |
```bash | |
--eval_docVQA | |
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images | |
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json | |
``` | |
###### DocVQATest | |
```bash | |
--eval_docVQATest | |
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images | |
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json | |
``` | |
<br /> | |
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json: | |
```bash | |
chmod +x ./shell/run_transform.sh | |
./shell/run_transform.sh | |
``` | |
<br /> | |
## MiniCPM-Llama3-V-2_5 | |
<details> | |
<summary>Expand</summary> | |
### opencompass | |
First, enter the `vlmevalkit` directory and install all dependencies: | |
```bash | |
cd vlmevalkit | |
pip install -r requirements.txt | |
``` | |
<br /> | |
Then, run `scripts/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode: | |
```bash | |
chmod +x ./scripts/run_inference.sh | |
./scripts/run_inference.sh $MODELNAME $DATALIST $MODE | |
``` | |
<br /> | |
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`: | |
```bash | |
ungrouped = { | |
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'), | |
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'), | |
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'), | |
} | |
``` | |
<br /> | |
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends: | |
```bash | |
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST" | |
``` | |
<br /> | |
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings: | |
```bash | |
# run on all 7 datasets | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all | |
# The following are instructions for running on a single dataset | |
# MME | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MME all | |
# MMBench_TEST_EN | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all | |
# MMBench_TEST_CN | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all | |
# MMMU_DEV_VAL | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all | |
# MathVista_MINI | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all | |
# LLaVABench | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all | |
# RealWorldQA | |
./scripts/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all | |
``` | |
<br /> | |
### vqadataset | |
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks: | |
```bash | |
cd vqaeval | |
pip install -r requirements.txt | |
mkdir downloads | |
``` | |
<br /> | |
Download the datasets from the following links and place it in the specified directories: | |
###### TextVQA | |
```bash | |
cd downloads | |
mkdir TextVQA && cd TextVQA | |
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip | |
unzip train_val_images.zip && rm train_val_images.zip | |
mv train_val_images/train_images . && rm -rf train_val_images | |
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json | |
cd ../.. | |
``` | |
###### DocVQA / DocVQATest | |
```bash | |
cd downloads | |
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images | |
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads | |
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory | |
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz | |
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip | |
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas | |
cd ../.. | |
``` | |
<br /> | |
The `downloads` directory should be organized according to the following structure: | |
```bash | |
downloads | |
βββ TextVQA | |
β βββ train_images | |
β β βββ ... | |
β βββ TextVQA_0.5.1_val.json | |
βββ DocVQA | |
β βββ spdocvqa_images | |
β β βββ ... | |
β βββ val_v1.0_withQT.json | |
β βββ test_v1.0.json | |
``` | |
<br /> | |
Modify the parameters in `shell/run_inference.sh` and run inference: | |
```bash | |
chmod +x ./shell/run_inference.sh | |
./shell/run_inference.sh | |
``` | |
<br /> | |
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows. | |
For `MiniCPM-Llama3-V-2_5`, set `model_name` to `minicpmv`: | |
```bash | |
# path to images and their corresponding questions | |
# TextVQA | |
--textVQA_image_dir | |
--textVQA_ann_path | |
# DocVQA | |
--docVQA_image_dir | |
--docVQA_ann_path | |
# DocVQATest | |
--docVQATest_image_dir | |
--docVQATest_ann_path | |
# whether to eval on certain task | |
--eval_textVQA | |
--eval_docVQA | |
--eval_docVQATest | |
--eval_all | |
# model name and model path | |
--model_name | |
--model_path | |
# load model from ckpt | |
--ckpt | |
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved. | |
--generate_method | |
--batchsize | |
# path to save the outputs | |
--answer_path | |
``` | |
<br /> | |
While evaluating on different tasks, parameters need to be set as follows: | |
###### TextVQA | |
```bash | |
--eval_textVQA | |
--textVQA_image_dir ./downloads/TextVQA/train_images | |
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json | |
``` | |
###### DocVQA | |
```bash | |
--eval_docVQA | |
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images | |
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json | |
``` | |
###### DocVQATest | |
```bash | |
--eval_docVQATest | |
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images | |
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json | |
``` | |
<br /> | |
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json: | |
```bash | |
chmod +x ./shell/run_transform.sh | |
./shell/run_transform.sh | |
``` | |
</details> |