Demo750's picture
Upload folder using huggingface_hub
569f484 verified
import json
import pickle
import pandas as pd
import os
import csv
import hashlib
import os.path as osp
import time
import numpy as np
import validators
import mimetypes
import multiprocessing as mp
from .misc import toliststr
from .vlm import decode_base64_to_image_file
def decode_img_omni(tup):
root, im, p = tup
images = toliststr(im)
paths = toliststr(p)
if len(images) > 1 and len(paths) == 1:
paths = [osp.splitext(p)[0] + f'_{i}' + osp.splitext(p)[1] for i in range(len(images))]
assert len(images) == len(paths)
paths = [osp.join(root, p) for p in paths]
for p, im in zip(paths, images):
if osp.exists(p):
continue
if isinstance(im, str) and len(im) > 64:
decode_base64_to_image_file(im, p)
return paths
def localize_df(data, dname, nproc=32):
assert 'image' in data
indices = list(data['index'])
indices_str = [str(x) for x in indices]
images = list(data['image'])
image_map = {x: y for x, y in zip(indices_str, images)}
root = LMUDataRoot()
root = osp.join(root, 'images', dname)
os.makedirs(root, exist_ok=True)
if 'image_path' in data:
img_paths = list(data['image_path'])
else:
img_paths = []
for i in indices_str:
if len(image_map[i]) <= 64:
idx = image_map[i]
assert idx in image_map and len(image_map[idx]) > 64
img_paths.append(f'{idx}.jpg')
else:
img_paths.append(f'{i}.jpg')
tups = [(root, im, p) for p, im in zip(img_paths, images)]
pool = mp.Pool(32)
ret = pool.map(decode_img_omni, tups)
pool.close()
data.pop('image')
if 'image_path' not in data:
data['image_path'] = [x[0] if len(x) == 1 else x for x in ret]
return data
def LMUDataRoot():
if 'LMUData' in os.environ and osp.exists(os.environ['LMUData']):
return os.environ['LMUData']
home = osp.expanduser('~')
root = osp.join(home, 'LMUData')
os.makedirs(root, exist_ok=True)
return root
def MMBenchOfficialServer(dataset_name):
root = LMUDataRoot()
if dataset_name in ['MMBench', 'MMBench_V11', 'MMBench_CN', 'MMBench_CN_V11']:
ans_file = f'{root}/{dataset_name}.tsv'
if osp.exists(ans_file):
data = load(ans_file)
if 'answer' in data and sum([pd.isna(x) for x in data['answer']]) == 0:
return True
if dataset_name in ['MMBench_TEST_EN', 'MMBench_TEST_CN', 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11']:
ans_file1 = f'{root}/{dataset_name}.tsv'
mapp = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_CN': 'MMBench_CN',
'MMBench_TEST_EN_V11': 'MMBench_V11', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11',
}
ans_file2 = f'{root}/{mapp[dataset_name]}.tsv'
for f in [ans_file1, ans_file2]:
if osp.exists(f):
data = load(f)
if 'answer' in data and sum([pd.isna(x) for x in data['answer']]) == 0:
return True
return False
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
return float(obj)
elif isinstance(obj, (np.complex_, np.complex64, np.complex128)):
return {'real': obj.real, 'imag': obj.imag}
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
elif isinstance(obj, (np.bool_)):
return bool(obj)
elif isinstance(obj, (np.void)):
return None
return json.JSONEncoder.default(self, obj)
# LOAD & DUMP
def dump(data, f, **kwargs):
def dump_pkl(data, pth, **kwargs):
pickle.dump(data, open(pth, 'wb'))
def dump_json(data, pth, **kwargs):
json.dump(data, open(pth, 'w'), indent=4, ensure_ascii=False, cls=NumpyEncoder)
def dump_jsonl(data, f, **kwargs):
lines = [json.dumps(x, ensure_ascii=False, cls=NumpyEncoder) for x in data]
with open(f, 'w', encoding='utf8') as fout:
fout.write('\n'.join(lines))
def dump_xlsx(data, f, **kwargs):
data.to_excel(f, index=False, engine='xlsxwriter')
def dump_csv(data, f, quoting=csv.QUOTE_ALL):
data.to_csv(f, index=False, encoding='utf-8', quoting=quoting)
def dump_tsv(data, f, quoting=csv.QUOTE_ALL):
data.to_csv(f, sep='\t', index=False, encoding='utf-8', quoting=quoting)
handlers = dict(pkl=dump_pkl, json=dump_json, jsonl=dump_jsonl, xlsx=dump_xlsx, csv=dump_csv, tsv=dump_tsv)
suffix = f.split('.')[-1]
return handlers[suffix](data, f, **kwargs)
def load(f, fmt=None):
def load_pkl(pth):
return pickle.load(open(pth, 'rb'))
def load_json(pth):
return json.load(open(pth, 'r', encoding='utf-8'))
def load_jsonl(f):
lines = open(f, encoding='utf-8').readlines()
lines = [x.strip() for x in lines]
if lines[-1] == '':
lines = lines[:-1]
data = [json.loads(x) for x in lines]
return data
def load_xlsx(f):
return pd.read_excel(f)
def load_csv(f):
return pd.read_csv(f)
def load_tsv(f):
return pd.read_csv(f, sep='\t')
handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv)
if fmt is not None:
return handlers[fmt](f)
suffix = f.split('.')[-1]
return handlers[suffix](f)
def download_file(url, filename=None):
import urllib.request
from tqdm import tqdm
class DownloadProgressBar(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
if filename is None:
filename = url.split('/')[-1]
# If HF_ENDPOINT is set, replace huggingface.co with it
if 'huggingface.co' in url and os.environ.get('HF_ENDPOINT', '') != '':
url = url.replace('huggingface.co', os.environ['HF_ENDPOINT'].split('://')[1])
try:
with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t:
urllib.request.urlretrieve(url, filename=filename, reporthook=t.update_to)
except:
# Handle Failed Downloads from huggingface.co
if 'huggingface.co' in url:
url_new = url.replace('huggingface.co', 'hf-mirror.com')
try:
os.system(f'wget {url_new} -O {filename}')
except:
raise Exception(f'Failed to download {url}')
else:
raise Exception(f'Failed to download {url}')
return filename
def ls(dirname='.', match=[], mode='all', level=1):
if isinstance(level, str):
assert '+' in level
level = int(level[:-1])
res = []
for i in range(1, level + 1):
res.extend(ls(dirname, match=match, mode='file', level=i))
return res
if dirname == '.':
ans = os.listdir(dirname)
else:
ans = [osp.join(dirname, x) for x in os.listdir(dirname)]
assert mode in ['all', 'dir', 'file']
assert level >= 1 and isinstance(level, int)
if level == 1:
if isinstance(match, str):
match = [match]
for m in match:
if len(m) == 0:
continue
if m[0] != '!':
ans = [x for x in ans if m in x]
else:
ans = [x for x in ans if m[1:] not in x]
if mode == 'dir':
ans = [x for x in ans if osp.isdir(x)]
elif mode == 'file':
ans = [x for x in ans if not osp.isdir(x)]
return ans
else:
dirs = [x for x in ans if osp.isdir(x)]
res = []
for d in dirs:
res.extend(ls(d, match=match, mode=mode, level=level - 1))
return res
def mrlines(fname, sp='\n'):
f = open(fname).read().split(sp)
while f != [] and f[-1] == '':
f = f[:-1]
return f
def mwlines(lines, fname):
with open(fname, 'w') as fout:
fout.write('\n'.join(lines))
def md5(s):
hash = hashlib.new('md5')
if osp.exists(s):
with open(s, 'rb') as f:
for chunk in iter(lambda: f.read(2**20), b''):
hash.update(chunk)
else:
hash.update(s.encode('utf-8'))
return str(hash.hexdigest())
def last_modified(pth):
stamp = osp.getmtime(pth)
m_ti = time.ctime(stamp)
t_obj = time.strptime(m_ti)
t = time.strftime('%Y%m%d%H%M%S', t_obj)[2:]
return t
def parse_file(s):
if osp.exists(s) and s != '.':
assert osp.isfile(s)
suffix = osp.splitext(s)[1].lower()
mime = mimetypes.types_map.get(suffix, 'unknown')
return (mime, s)
elif validators.url(s):
suffix = osp.splitext(s)[1].lower()
if suffix in mimetypes.types_map:
mime = mimetypes.types_map[suffix]
dname = osp.join(LMUDataRoot(), 'files')
os.makedirs(dname, exist_ok=True)
tgt = osp.join(dname, md5(s) + suffix)
download_file(s, tgt)
return (mime, tgt)
else:
return ('url', s)
else:
return (None, s)
def file_size(f, unit='GB'):
stats = os.stat(f)
div_map = {
'GB': 2 ** 30,
'MB': 2 ** 20,
'KB': 2 ** 10,
}
return stats.st_size / div_map[unit]
def parquet_to_tsv(file_path):
data = pd.read_parquet(file_path)
pth = '/'.join(file_path.split('/')[:-1])
data_name = file_path.split('/')[-1].split('.')[0]
data.to_csv(osp.join(pth, f'{data_name}.tsv'), sep='\t', index=False)