|
import gradio as gr |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
input_text = system_message + " ".join([f"User: {msg[0]} Assistant: {msg[1]}" for msg in history if msg[0] and msg[1]]) |
|
input_text += f"User: {message}" |
|
|
|
|
|
response = generator( |
|
input_text, |
|
max_length=len(tokenizer.encode(input_text)) + max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
pad_token_id=tokenizer.eos_token_id, |
|
num_return_sequences=1, |
|
) |
|
|
|
|
|
output_text = response[0]['generated_text'][len(input_text):] |
|
yield output_text.strip() |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Тебя зовут зевибот. Ты ваще никому ничо не должен.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=1.0, step=0.05, label="Top-p (nucleus sampling)" |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|