Spaces:
Configuration error
Configuration error
# liteLLM Proxy Server: 50+ LLM Models, Error Handling, Caching | |
### Azure, Llama2, OpenAI, Claude, Hugging Face, Replicate Models | |
[](https://pypi.org/project/litellm/) | |
[](https://pypi.org/project/litellm/0.1.1/) | |
 | |
[](https://github.com/BerriAI/litellm) | |
[](https://railway.app/template/DYqQAW?referralCode=t3ukrU) | |
 | |
## What does liteLLM proxy do | |
- Make `/chat/completions` requests for 50+ LLM models **Azure, OpenAI, Replicate, Anthropic, Hugging Face** | |
Example: for `model` use `claude-2`, `gpt-3.5`, `gpt-4`, `command-nightly`, `stabilityai/stablecode-completion-alpha-3b-4k` | |
```json | |
{ | |
"model": "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1", | |
"messages": [ | |
{ | |
"content": "Hello, whats the weather in San Francisco??", | |
"role": "user" | |
} | |
] | |
} | |
``` | |
- **Consistent Input/Output** Format | |
- Call all models using the OpenAI format - `completion(model, messages)` | |
- Text responses will always be available at `['choices'][0]['message']['content']` | |
- **Error Handling** Using Model Fallbacks (if `GPT-4` fails, try `llama2`) | |
- **Logging** - Log Requests, Responses and Errors to `Supabase`, `Posthog`, `Mixpanel`, `Sentry`, `Lunary`,`Athina`, `Helicone` (Any of the supported providers here: https://litellm.readthedocs.io/en/latest/advanced/ | |
**Example: Logs sent to Supabase** | |
<img width="1015" alt="Screenshot 2023-08-11 at 4 02 46 PM" src="https://github.com/ishaan-jaff/proxy-server/assets/29436595/237557b8-ba09-4917-982c-8f3e1b2c8d08"> | |
- **Token Usage & Spend** - Track Input + Completion tokens used + Spend/model | |
- **Caching** - Implementation of Semantic Caching | |
- **Streaming & Async Support** - Return generators to stream text responses | |
## API Endpoints | |
### `/chat/completions` (POST) | |
This endpoint is used to generate chat completions for 50+ support LLM API Models. Use llama2, GPT-4, Claude2 etc | |
#### Input | |
This API endpoint accepts all inputs in raw JSON and expects the following inputs | |
- `model` (string, required): ID of the model to use for chat completions. See all supported models [here]: (https://litellm.readthedocs.io/en/latest/supported/): | |
eg `gpt-3.5-turbo`, `gpt-4`, `claude-2`, `command-nightly`, `stabilityai/stablecode-completion-alpha-3b-4k` | |
- `messages` (array, required): A list of messages representing the conversation context. Each message should have a `role` (system, user, assistant, or function), `content` (message text), and `name` (for function role). | |
- Additional Optional parameters: `temperature`, `functions`, `function_call`, `top_p`, `n`, `stream`. See the full list of supported inputs here: https://litellm.readthedocs.io/en/latest/input/ | |
#### Example JSON body | |
For claude-2 | |
```json | |
{ | |
"model": "claude-2", | |
"messages": [ | |
{ | |
"content": "Hello, whats the weather in San Francisco??", | |
"role": "user" | |
} | |
] | |
} | |
``` | |
### Making an API request to the Proxy Server | |
```python | |
import requests | |
import json | |
# TODO: use your URL | |
url = "http://localhost:5000/chat/completions" | |
payload = json.dumps({ | |
"model": "gpt-3.5-turbo", | |
"messages": [ | |
{ | |
"content": "Hello, whats the weather in San Francisco??", | |
"role": "user" | |
} | |
] | |
}) | |
headers = { | |
'Content-Type': 'application/json' | |
} | |
response = requests.request("POST", url, headers=headers, data=payload) | |
print(response.text) | |
``` | |
### Output [Response Format] | |
Responses from the server are given in the following format. | |
All responses from the server are returned in the following format (for all LLM models). More info on output here: https://litellm.readthedocs.io/en/latest/output/ | |
```json | |
{ | |
"choices": [ | |
{ | |
"finish_reason": "stop", | |
"index": 0, | |
"message": { | |
"content": "I'm sorry, but I don't have the capability to provide real-time weather information. However, you can easily check the weather in San Francisco by searching online or using a weather app on your phone.", | |
"role": "assistant" | |
} | |
} | |
], | |
"created": 1691790381, | |
"id": "chatcmpl-7mUFZlOEgdohHRDx2UpYPRTejirzb", | |
"model": "gpt-3.5-turbo-0613", | |
"object": "chat.completion", | |
"usage": { | |
"completion_tokens": 41, | |
"prompt_tokens": 16, | |
"total_tokens": 57 | |
} | |
} | |
``` | |
## Installation & Usage | |
### Running Locally | |
1. Clone liteLLM repository to your local machine: | |
``` | |
git clone https://github.com/BerriAI/liteLLM-proxy | |
``` | |
2. Install the required dependencies using pip | |
``` | |
pip install -r requirements.txt | |
``` | |
3. Set your LLM API keys | |
``` | |
os.environ['OPENAI_API_KEY]` = "YOUR_API_KEY" | |
or | |
set OPENAI_API_KEY in your .env file | |
``` | |
4. Run the server: | |
``` | |
python main.py | |
``` | |
## Deploying | |
1. Quick Start: Deploy on Railway | |
[](https://railway.app/template/DYqQAW?referralCode=t3ukrU) | |
2. `GCP`, `AWS`, `Azure` | |
This project includes a `Dockerfile` allowing you to build and deploy a Docker Project on your providers | |
# Support / Talk with founders | |
- [Our calendar π](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version) | |
- [Community Discord π](https://discord.gg/wuPM9dRgDw) | |
- Our numbers π +1 (770) 8783-106 / +1 (412) 618-6238 | |
- Our emails βοΈ [email protected] / [email protected] | |
## Roadmap | |
- [ ] Support hosted db (e.g. Supabase) | |
- [ ] Easily send data to places like posthog and sentry. | |
- [ ] Add a hot-cache for project spend logs - enables fast checks for user + project limitings | |
- [ ] Implement user-based rate-limiting | |
- [ ] Spending controls per project - expose key creation endpoint | |
- [ ] Need to store a keys db -> mapping created keys to their alias (i.e. project name) | |
- [ ] Easily add new models as backups / as the entry-point (add this to the available model list) | |