Spaces:
Configuration error
Configuration error
import os | |
from typing import List, Literal | |
ROUTER_MAX_FALLBACKS = int(os.getenv("ROUTER_MAX_FALLBACKS", 5)) | |
DEFAULT_BATCH_SIZE = int(os.getenv("DEFAULT_BATCH_SIZE", 512)) | |
DEFAULT_FLUSH_INTERVAL_SECONDS = int(os.getenv("DEFAULT_FLUSH_INTERVAL_SECONDS", 5)) | |
DEFAULT_S3_FLUSH_INTERVAL_SECONDS = int( | |
os.getenv("DEFAULT_S3_FLUSH_INTERVAL_SECONDS", 10) | |
) | |
DEFAULT_S3_BATCH_SIZE = int(os.getenv("DEFAULT_S3_BATCH_SIZE", 512)) | |
DEFAULT_MAX_RETRIES = int(os.getenv("DEFAULT_MAX_RETRIES", 2)) | |
DEFAULT_MAX_RECURSE_DEPTH = int(os.getenv("DEFAULT_MAX_RECURSE_DEPTH", 100)) | |
DEFAULT_MAX_RECURSE_DEPTH_SENSITIVE_DATA_MASKER = int( | |
os.getenv("DEFAULT_MAX_RECURSE_DEPTH_SENSITIVE_DATA_MASKER", 10) | |
) | |
DEFAULT_FAILURE_THRESHOLD_PERCENT = float( | |
os.getenv("DEFAULT_FAILURE_THRESHOLD_PERCENT", 0.5) | |
) # default cooldown a deployment if 50% of requests fail in a given minute | |
DEFAULT_MAX_TOKENS = int(os.getenv("DEFAULT_MAX_TOKENS", 4096)) | |
DEFAULT_ALLOWED_FAILS = int(os.getenv("DEFAULT_ALLOWED_FAILS", 3)) | |
DEFAULT_REDIS_SYNC_INTERVAL = int(os.getenv("DEFAULT_REDIS_SYNC_INTERVAL", 1)) | |
DEFAULT_COOLDOWN_TIME_SECONDS = int(os.getenv("DEFAULT_COOLDOWN_TIME_SECONDS", 5)) | |
DEFAULT_REPLICATE_POLLING_RETRIES = int( | |
os.getenv("DEFAULT_REPLICATE_POLLING_RETRIES", 5) | |
) | |
DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = int( | |
os.getenv("DEFAULT_REPLICATE_POLLING_DELAY_SECONDS", 1) | |
) | |
DEFAULT_IMAGE_TOKEN_COUNT = int(os.getenv("DEFAULT_IMAGE_TOKEN_COUNT", 250)) | |
DEFAULT_IMAGE_WIDTH = int(os.getenv("DEFAULT_IMAGE_WIDTH", 300)) | |
DEFAULT_IMAGE_HEIGHT = int(os.getenv("DEFAULT_IMAGE_HEIGHT", 300)) | |
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = int( | |
os.getenv("MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB", 1024) | |
) # 1MB = 1024KB | |
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = int( | |
os.getenv("SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD", 1000) | |
) # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic. | |
DEFAULT_REASONING_EFFORT_DISABLE_THINKING_BUDGET = int( | |
os.getenv("DEFAULT_REASONING_EFFORT_DISABLE_THINKING_BUDGET", 0) | |
) | |
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = int( | |
os.getenv("DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET", 1024) | |
) | |
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = int( | |
os.getenv("DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET", 2048) | |
) | |
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = int( | |
os.getenv("DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET", 4096) | |
) | |
MAX_TOKEN_TRIMMING_ATTEMPTS = int( | |
os.getenv("MAX_TOKEN_TRIMMING_ATTEMPTS", 10) | |
) # Maximum number of attempts to trim the message | |
########## Networking constants ############################################################## | |
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour | |
########### v2 Architecture constants for managing writing updates to the database ########### | |
REDIS_UPDATE_BUFFER_KEY = "litellm_spend_update_buffer" | |
REDIS_DAILY_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_spend_update_buffer" | |
REDIS_DAILY_TEAM_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_team_spend_update_buffer" | |
REDIS_DAILY_TAG_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_tag_spend_update_buffer" | |
MAX_REDIS_BUFFER_DEQUEUE_COUNT = int(os.getenv("MAX_REDIS_BUFFER_DEQUEUE_COUNT", 100)) | |
MAX_SIZE_IN_MEMORY_QUEUE = int(os.getenv("MAX_SIZE_IN_MEMORY_QUEUE", 10000)) | |
MAX_IN_MEMORY_QUEUE_FLUSH_COUNT = int( | |
os.getenv("MAX_IN_MEMORY_QUEUE_FLUSH_COUNT", 1000) | |
) | |
############################################################################################### | |
MINIMUM_PROMPT_CACHE_TOKEN_COUNT = int( | |
os.getenv("MINIMUM_PROMPT_CACHE_TOKEN_COUNT", 1024) | |
) # minimum number of tokens to cache a prompt by Anthropic | |
DEFAULT_TRIM_RATIO = float( | |
os.getenv("DEFAULT_TRIM_RATIO", 0.75) | |
) # default ratio of tokens to trim from the end of a prompt | |
HOURS_IN_A_DAY = int(os.getenv("HOURS_IN_A_DAY", 24)) | |
DAYS_IN_A_WEEK = int(os.getenv("DAYS_IN_A_WEEK", 7)) | |
DAYS_IN_A_MONTH = int(os.getenv("DAYS_IN_A_MONTH", 28)) | |
DAYS_IN_A_YEAR = int(os.getenv("DAYS_IN_A_YEAR", 365)) | |
REPLICATE_MODEL_NAME_WITH_ID_LENGTH = int( | |
os.getenv("REPLICATE_MODEL_NAME_WITH_ID_LENGTH", 64) | |
) | |
#### TOKEN COUNTING #### | |
FUNCTION_DEFINITION_TOKEN_COUNT = int(os.getenv("FUNCTION_DEFINITION_TOKEN_COUNT", 9)) | |
SYSTEM_MESSAGE_TOKEN_COUNT = int(os.getenv("SYSTEM_MESSAGE_TOKEN_COUNT", 4)) | |
TOOL_CHOICE_OBJECT_TOKEN_COUNT = int(os.getenv("TOOL_CHOICE_OBJECT_TOKEN_COUNT", 4)) | |
DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT = int( | |
os.getenv("DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT", 10) | |
) | |
DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT = int( | |
os.getenv("DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT", 20) | |
) | |
MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES = int( | |
os.getenv("MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES", 768) | |
) | |
MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES = int( | |
os.getenv("MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES", 2000) | |
) | |
MAX_TILE_WIDTH = int(os.getenv("MAX_TILE_WIDTH", 512)) | |
MAX_TILE_HEIGHT = int(os.getenv("MAX_TILE_HEIGHT", 512)) | |
OPENAI_FILE_SEARCH_COST_PER_1K_CALLS = float( | |
os.getenv("OPENAI_FILE_SEARCH_COST_PER_1K_CALLS", 2.5 / 1000) | |
) | |
MIN_NON_ZERO_TEMPERATURE = float(os.getenv("MIN_NON_ZERO_TEMPERATURE", 0.0001)) | |
#### RELIABILITY #### | |
REPEATED_STREAMING_CHUNK_LIMIT = int( | |
os.getenv("REPEATED_STREAMING_CHUNK_LIMIT", 100) | |
) # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives. | |
DEFAULT_MAX_LRU_CACHE_SIZE = int(os.getenv("DEFAULT_MAX_LRU_CACHE_SIZE", 16)) | |
INITIAL_RETRY_DELAY = float(os.getenv("INITIAL_RETRY_DELAY", 0.5)) | |
MAX_RETRY_DELAY = float(os.getenv("MAX_RETRY_DELAY", 8.0)) | |
JITTER = float(os.getenv("JITTER", 0.75)) | |
DEFAULT_IN_MEMORY_TTL = int( | |
os.getenv("DEFAULT_IN_MEMORY_TTL", 5) | |
) # default time to live for the in-memory cache | |
DEFAULT_POLLING_INTERVAL = float( | |
os.getenv("DEFAULT_POLLING_INTERVAL", 0.03) | |
) # default polling interval for the scheduler | |
AZURE_OPERATION_POLLING_TIMEOUT = int(os.getenv("AZURE_OPERATION_POLLING_TIMEOUT", 120)) | |
REDIS_SOCKET_TIMEOUT = float(os.getenv("REDIS_SOCKET_TIMEOUT", 0.1)) | |
REDIS_CONNECTION_POOL_TIMEOUT = int(os.getenv("REDIS_CONNECTION_POOL_TIMEOUT", 5)) | |
NON_LLM_CONNECTION_TIMEOUT = int( | |
os.getenv("NON_LLM_CONNECTION_TIMEOUT", 15) | |
) # timeout for adjacent services (e.g. jwt auth) | |
MAX_EXCEPTION_MESSAGE_LENGTH = int(os.getenv("MAX_EXCEPTION_MESSAGE_LENGTH", 2000)) | |
BEDROCK_MAX_POLICY_SIZE = int(os.getenv("BEDROCK_MAX_POLICY_SIZE", 75)) | |
REPLICATE_POLLING_DELAY_SECONDS = float( | |
os.getenv("REPLICATE_POLLING_DELAY_SECONDS", 0.5) | |
) | |
DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS = int( | |
os.getenv("DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS", 4096) | |
) | |
TOGETHER_AI_4_B = int(os.getenv("TOGETHER_AI_4_B", 4)) | |
TOGETHER_AI_8_B = int(os.getenv("TOGETHER_AI_8_B", 8)) | |
TOGETHER_AI_21_B = int(os.getenv("TOGETHER_AI_21_B", 21)) | |
TOGETHER_AI_41_B = int(os.getenv("TOGETHER_AI_41_B", 41)) | |
TOGETHER_AI_80_B = int(os.getenv("TOGETHER_AI_80_B", 80)) | |
TOGETHER_AI_110_B = int(os.getenv("TOGETHER_AI_110_B", 110)) | |
TOGETHER_AI_EMBEDDING_150_M = int(os.getenv("TOGETHER_AI_EMBEDDING_150_M", 150)) | |
TOGETHER_AI_EMBEDDING_350_M = int(os.getenv("TOGETHER_AI_EMBEDDING_350_M", 350)) | |
QDRANT_SCALAR_QUANTILE = float(os.getenv("QDRANT_SCALAR_QUANTILE", 0.99)) | |
QDRANT_VECTOR_SIZE = int(os.getenv("QDRANT_VECTOR_SIZE", 1536)) | |
CACHED_STREAMING_CHUNK_DELAY = float(os.getenv("CACHED_STREAMING_CHUNK_DELAY", 0.02)) | |
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = int( | |
os.getenv("MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB", 512) | |
) | |
DEFAULT_MAX_TOKENS_FOR_TRITON = int(os.getenv("DEFAULT_MAX_TOKENS_FOR_TRITON", 2000)) | |
#### Networking settings #### | |
request_timeout: float = float(os.getenv("REQUEST_TIMEOUT", 6000)) # time in seconds | |
STREAM_SSE_DONE_STRING: str = "[DONE]" | |
STREAM_SSE_DATA_PREFIX: str = "data: " | |
### SPEND TRACKING ### | |
DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND = float( | |
os.getenv("DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND", 0.001400) | |
) # price per second for a100 80GB | |
FIREWORKS_AI_56_B_MOE = int(os.getenv("FIREWORKS_AI_56_B_MOE", 56)) | |
FIREWORKS_AI_176_B_MOE = int(os.getenv("FIREWORKS_AI_176_B_MOE", 176)) | |
FIREWORKS_AI_4_B = int(os.getenv("FIREWORKS_AI_4_B", 4)) | |
FIREWORKS_AI_16_B = int(os.getenv("FIREWORKS_AI_16_B", 16)) | |
FIREWORKS_AI_80_B = int(os.getenv("FIREWORKS_AI_80_B", 80)) | |
#### Logging callback constants #### | |
REDACTED_BY_LITELM_STRING = "REDACTED_BY_LITELM" | |
MAX_LANGFUSE_INITIALIZED_CLIENTS = int( | |
os.getenv("MAX_LANGFUSE_INITIALIZED_CLIENTS", 50) | |
) | |
DD_TRACER_STREAMING_CHUNK_YIELD_RESOURCE = os.getenv( | |
"DD_TRACER_STREAMING_CHUNK_YIELD_RESOURCE", "streaming.chunk.yield" | |
) | |
############### LLM Provider Constants ############### | |
### ANTHROPIC CONSTANTS ### | |
ANTHROPIC_WEB_SEARCH_TOOL_MAX_USES = { | |
"low": 1, | |
"medium": 5, | |
"high": 10, | |
} | |
DEFAULT_IMAGE_ENDPOINT_MODEL = "dall-e-2" | |
LITELLM_CHAT_PROVIDERS = [ | |
"openai", | |
"openai_like", | |
"xai", | |
"custom_openai", | |
"text-completion-openai", | |
"cohere", | |
"cohere_chat", | |
"clarifai", | |
"anthropic", | |
"anthropic_text", | |
"replicate", | |
"huggingface", | |
"together_ai", | |
"datarobot", | |
"openrouter", | |
"vertex_ai", | |
"vertex_ai_beta", | |
"gemini", | |
"ai21", | |
"baseten", | |
"azure", | |
"azure_text", | |
"azure_ai", | |
"sagemaker", | |
"sagemaker_chat", | |
"bedrock", | |
"vllm", | |
"nlp_cloud", | |
"petals", | |
"oobabooga", | |
"ollama", | |
"ollama_chat", | |
"deepinfra", | |
"perplexity", | |
"mistral", | |
"groq", | |
"nvidia_nim", | |
"cerebras", | |
"ai21_chat", | |
"volcengine", | |
"codestral", | |
"text-completion-codestral", | |
"deepseek", | |
"sambanova", | |
"maritalk", | |
"cloudflare", | |
"fireworks_ai", | |
"friendliai", | |
"watsonx", | |
"watsonx_text", | |
"triton", | |
"predibase", | |
"databricks", | |
"empower", | |
"github", | |
"custom", | |
"litellm_proxy", | |
"hosted_vllm", | |
"llamafile", | |
"lm_studio", | |
"galadriel", | |
"novita", | |
"meta_llama", | |
"featherless_ai", | |
"nscale", | |
"nebius", | |
] | |
LITELLM_EMBEDDING_PROVIDERS_SUPPORTING_INPUT_ARRAY_OF_TOKENS = [ | |
"openai", | |
"azure", | |
"hosted_vllm", | |
"nebius", | |
] | |
OPENAI_CHAT_COMPLETION_PARAMS = [ | |
"functions", | |
"function_call", | |
"temperature", | |
"temperature", | |
"top_p", | |
"n", | |
"stream", | |
"stream_options", | |
"stop", | |
"max_completion_tokens", | |
"modalities", | |
"prediction", | |
"audio", | |
"max_tokens", | |
"presence_penalty", | |
"frequency_penalty", | |
"logit_bias", | |
"user", | |
"request_timeout", | |
"api_base", | |
"api_version", | |
"api_key", | |
"deployment_id", | |
"organization", | |
"base_url", | |
"default_headers", | |
"timeout", | |
"response_format", | |
"seed", | |
"tools", | |
"tool_choice", | |
"max_retries", | |
"parallel_tool_calls", | |
"logprobs", | |
"top_logprobs", | |
"reasoning_effort", | |
"extra_headers", | |
"thinking", | |
"web_search_options", | |
] | |
OPENAI_TRANSCRIPTION_PARAMS = [ | |
"language", | |
"response_format", | |
"timestamp_granularities", | |
] | |
OPENAI_EMBEDDING_PARAMS = ["dimensions", "encoding_format", "user"] | |
DEFAULT_EMBEDDING_PARAM_VALUES = { | |
**{k: None for k in OPENAI_EMBEDDING_PARAMS}, | |
"model": None, | |
"custom_llm_provider": "", | |
"input": None, | |
} | |
DEFAULT_CHAT_COMPLETION_PARAM_VALUES = { | |
"functions": None, | |
"function_call": None, | |
"temperature": None, | |
"top_p": None, | |
"n": None, | |
"stream": None, | |
"stream_options": None, | |
"stop": None, | |
"max_tokens": None, | |
"max_completion_tokens": None, | |
"modalities": None, | |
"prediction": None, | |
"audio": None, | |
"presence_penalty": None, | |
"frequency_penalty": None, | |
"logit_bias": None, | |
"user": None, | |
"model": None, | |
"custom_llm_provider": "", | |
"response_format": None, | |
"seed": None, | |
"tools": None, | |
"tool_choice": None, | |
"max_retries": None, | |
"logprobs": None, | |
"top_logprobs": None, | |
"extra_headers": None, | |
"api_version": None, | |
"parallel_tool_calls": None, | |
"drop_params": None, | |
"allowed_openai_params": None, | |
"additional_drop_params": None, | |
"messages": None, | |
"reasoning_effort": None, | |
"thinking": None, | |
"web_search_options": None, | |
} | |
openai_compatible_endpoints: List = [ | |
"api.perplexity.ai", | |
"api.endpoints.anyscale.com/v1", | |
"api.deepinfra.com/v1/openai", | |
"api.mistral.ai/v1", | |
"codestral.mistral.ai/v1/chat/completions", | |
"codestral.mistral.ai/v1/fim/completions", | |
"api.groq.com/openai/v1", | |
"https://integrate.api.nvidia.com/v1", | |
"api.deepseek.com/v1", | |
"api.together.xyz/v1", | |
"app.empower.dev/api/v1", | |
"https://api.friendli.ai/serverless/v1", | |
"api.sambanova.ai/v1", | |
"api.x.ai/v1", | |
"api.galadriel.ai/v1", | |
"api.llama.com/compat/v1/", | |
"api.featherless.ai/v1", | |
"inference.api.nscale.com/v1", | |
"api.studio.nebius.ai/v1", | |
] | |
openai_compatible_providers: List = [ | |
"anyscale", | |
"mistral", | |
"groq", | |
"nvidia_nim", | |
"cerebras", | |
"sambanova", | |
"ai21_chat", | |
"ai21", | |
"volcengine", | |
"codestral", | |
"deepseek", | |
"deepinfra", | |
"perplexity", | |
"xinference", | |
"xai", | |
"together_ai", | |
"fireworks_ai", | |
"empower", | |
"friendliai", | |
"azure_ai", | |
"github", | |
"litellm_proxy", | |
"hosted_vllm", | |
"llamafile", | |
"lm_studio", | |
"galadriel", | |
"novita", | |
"meta_llama", | |
"featherless_ai", | |
"nscale", | |
"nebius", | |
] | |
openai_text_completion_compatible_providers: List = ( | |
[ # providers that support `/v1/completions` | |
"together_ai", | |
"fireworks_ai", | |
"hosted_vllm", | |
"meta_llama", | |
"llamafile", | |
"featherless_ai", | |
"nebius", | |
] | |
) | |
_openai_like_providers: List = [ | |
"predibase", | |
"databricks", | |
"watsonx", | |
] # private helper. similar to openai but require some custom auth / endpoint handling, so can't use the openai sdk | |
# well supported replicate llms | |
replicate_models: List = [ | |
# llama replicate supported LLMs | |
"replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf", | |
"a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52", | |
"meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db", | |
# Vicuna | |
"replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b", | |
"joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe", | |
# Flan T-5 | |
"daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f", | |
# Others | |
"replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5", | |
"replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad", | |
] | |
clarifai_models: List = [ | |
"clarifai/meta.Llama-3.Llama-3-8B-Instruct", | |
"clarifai/gcp.generate.gemma-1_1-7b-it", | |
"clarifai/mistralai.completion.mixtral-8x22B", | |
"clarifai/cohere.generate.command-r-plus", | |
"clarifai/databricks.drbx.dbrx-instruct", | |
"clarifai/mistralai.completion.mistral-large", | |
"clarifai/mistralai.completion.mistral-medium", | |
"clarifai/mistralai.completion.mistral-small", | |
"clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1", | |
"clarifai/gcp.generate.gemma-2b-it", | |
"clarifai/gcp.generate.gemma-7b-it", | |
"clarifai/deci.decilm.deciLM-7B-instruct", | |
"clarifai/mistralai.completion.mistral-7B-Instruct", | |
"clarifai/gcp.generate.gemini-pro", | |
"clarifai/anthropic.completion.claude-v1", | |
"clarifai/anthropic.completion.claude-instant-1_2", | |
"clarifai/anthropic.completion.claude-instant", | |
"clarifai/anthropic.completion.claude-v2", | |
"clarifai/anthropic.completion.claude-2_1", | |
"clarifai/meta.Llama-2.codeLlama-70b-Python", | |
"clarifai/meta.Llama-2.codeLlama-70b-Instruct", | |
"clarifai/openai.completion.gpt-3_5-turbo-instruct", | |
"clarifai/meta.Llama-2.llama2-7b-chat", | |
"clarifai/meta.Llama-2.llama2-13b-chat", | |
"clarifai/meta.Llama-2.llama2-70b-chat", | |
"clarifai/openai.chat-completion.gpt-4-turbo", | |
"clarifai/microsoft.text-generation.phi-2", | |
"clarifai/meta.Llama-2.llama2-7b-chat-vllm", | |
"clarifai/upstage.solar.solar-10_7b-instruct", | |
"clarifai/openchat.openchat.openchat-3_5-1210", | |
"clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B", | |
"clarifai/gcp.generate.text-bison", | |
"clarifai/meta.Llama-2.llamaGuard-7b", | |
"clarifai/fblgit.una-cybertron.una-cybertron-7b-v2", | |
"clarifai/openai.chat-completion.GPT-4", | |
"clarifai/openai.chat-completion.GPT-3_5-turbo", | |
"clarifai/ai21.complete.Jurassic2-Grande", | |
"clarifai/ai21.complete.Jurassic2-Grande-Instruct", | |
"clarifai/ai21.complete.Jurassic2-Jumbo-Instruct", | |
"clarifai/ai21.complete.Jurassic2-Jumbo", | |
"clarifai/ai21.complete.Jurassic2-Large", | |
"clarifai/cohere.generate.cohere-generate-command", | |
"clarifai/wizardlm.generate.wizardCoder-Python-34B", | |
"clarifai/wizardlm.generate.wizardLM-70B", | |
"clarifai/tiiuae.falcon.falcon-40b-instruct", | |
"clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat", | |
"clarifai/gcp.generate.code-gecko", | |
"clarifai/gcp.generate.code-bison", | |
"clarifai/mistralai.completion.mistral-7B-OpenOrca", | |
"clarifai/mistralai.completion.openHermes-2-mistral-7B", | |
"clarifai/wizardlm.generate.wizardLM-13B", | |
"clarifai/huggingface-research.zephyr.zephyr-7B-alpha", | |
"clarifai/wizardlm.generate.wizardCoder-15B", | |
"clarifai/microsoft.text-generation.phi-1_5", | |
"clarifai/databricks.Dolly-v2.dolly-v2-12b", | |
"clarifai/bigcode.code.StarCoder", | |
"clarifai/salesforce.xgen.xgen-7b-8k-instruct", | |
"clarifai/mosaicml.mpt.mpt-7b-instruct", | |
"clarifai/anthropic.completion.claude-3-opus", | |
"clarifai/anthropic.completion.claude-3-sonnet", | |
"clarifai/gcp.generate.gemini-1_5-pro", | |
"clarifai/gcp.generate.imagen-2", | |
"clarifai/salesforce.blip.general-english-image-caption-blip-2", | |
] | |
huggingface_models: List = [ | |
"meta-llama/Llama-2-7b-hf", | |
"meta-llama/Llama-2-7b-chat-hf", | |
"meta-llama/Llama-2-13b-hf", | |
"meta-llama/Llama-2-13b-chat-hf", | |
"meta-llama/Llama-2-70b-hf", | |
"meta-llama/Llama-2-70b-chat-hf", | |
"meta-llama/Llama-2-7b", | |
"meta-llama/Llama-2-7b-chat", | |
"meta-llama/Llama-2-13b", | |
"meta-llama/Llama-2-13b-chat", | |
"meta-llama/Llama-2-70b", | |
"meta-llama/Llama-2-70b-chat", | |
] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers | |
empower_models = [ | |
"empower/empower-functions", | |
"empower/empower-functions-small", | |
] | |
together_ai_models: List = [ | |
# llama llms - chat | |
"togethercomputer/llama-2-70b-chat", | |
# llama llms - language / instruct | |
"togethercomputer/llama-2-70b", | |
"togethercomputer/LLaMA-2-7B-32K", | |
"togethercomputer/Llama-2-7B-32K-Instruct", | |
"togethercomputer/llama-2-7b", | |
# falcon llms | |
"togethercomputer/falcon-40b-instruct", | |
"togethercomputer/falcon-7b-instruct", | |
# alpaca | |
"togethercomputer/alpaca-7b", | |
# chat llms | |
"HuggingFaceH4/starchat-alpha", | |
# code llms | |
"togethercomputer/CodeLlama-34b", | |
"togethercomputer/CodeLlama-34b-Instruct", | |
"togethercomputer/CodeLlama-34b-Python", | |
"defog/sqlcoder", | |
"NumbersStation/nsql-llama-2-7B", | |
"WizardLM/WizardCoder-15B-V1.0", | |
"WizardLM/WizardCoder-Python-34B-V1.0", | |
# language llms | |
"NousResearch/Nous-Hermes-Llama2-13b", | |
"Austism/chronos-hermes-13b", | |
"upstage/SOLAR-0-70b-16bit", | |
"WizardLM/WizardLM-70B-V1.0", | |
] # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...) | |
baseten_models: List = [ | |
"qvv0xeq", | |
"q841o8w", | |
"31dxrj3", | |
] # FALCON 7B # WizardLM # Mosaic ML | |
featherless_ai_models: List = [ | |
"featherless-ai/Qwerky-72B", | |
"featherless-ai/Qwerky-QwQ-32B", | |
"Qwen/Qwen2.5-72B-Instruct", | |
"all-hands/openhands-lm-32b-v0.1", | |
"Qwen/Qwen2.5-Coder-32B-Instruct", | |
"deepseek-ai/DeepSeek-V3-0324", | |
"mistralai/Mistral-Small-24B-Instruct-2501", | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
"ProdeusUnity/Stellar-Odyssey-12b-v0.0", | |
] | |
nebius_models: List = [ | |
"Qwen/Qwen3-235B-A22B", | |
"Qwen/Qwen3-30B-A3B-fast", | |
"Qwen/Qwen3-32B", | |
"Qwen/Qwen3-14B", | |
"nvidia/Llama-3_1-Nemotron-Ultra-253B-v1", | |
"deepseek-ai/DeepSeek-V3-0324", | |
"deepseek-ai/DeepSeek-V3-0324-fast", | |
"deepseek-ai/DeepSeek-R1", | |
"deepseek-ai/DeepSeek-R1-fast", | |
"meta-llama/Llama-3.3-70B-Instruct-fast", | |
"Qwen/Qwen2.5-32B-Instruct-fast", | |
"Qwen/Qwen2.5-Coder-32B-Instruct-fast", | |
] | |
nebius_embedding_models: List = [ | |
"BAAI/bge-en-icl", | |
"BAAI/bge-multilingual-gemma2", | |
"intfloat/e5-mistral-7b-instruct", | |
] | |
BEDROCK_INVOKE_PROVIDERS_LITERAL = Literal[ | |
"cohere", | |
"anthropic", | |
"mistral", | |
"amazon", | |
"meta", | |
"llama", | |
"ai21", | |
"nova", | |
"deepseek_r1", | |
] | |
open_ai_embedding_models: List = ["text-embedding-ada-002"] | |
cohere_embedding_models: List = [ | |
"embed-v4.0", | |
"embed-english-v3.0", | |
"embed-english-light-v3.0", | |
"embed-multilingual-v3.0", | |
"embed-english-v2.0", | |
"embed-english-light-v2.0", | |
"embed-multilingual-v2.0", | |
] | |
bedrock_embedding_models: List = [ | |
"amazon.titan-embed-text-v1", | |
"cohere.embed-english-v3", | |
"cohere.embed-multilingual-v3", | |
] | |
known_tokenizer_config = { | |
"mistralai/Mistral-7B-Instruct-v0.1": { | |
"tokenizer": { | |
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", | |
"bos_token": "<s>", | |
"eos_token": "</s>", | |
}, | |
"status": "success", | |
}, | |
"meta-llama/Meta-Llama-3-8B-Instruct": { | |
"tokenizer": { | |
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", | |
"bos_token": "<|begin_of_text|>", | |
"eos_token": "", | |
}, | |
"status": "success", | |
}, | |
"deepseek-r1/deepseek-r1-7b-instruct": { | |
"tokenizer": { | |
"add_bos_token": True, | |
"add_eos_token": False, | |
"bos_token": { | |
"__type": "AddedToken", | |
"content": "<|begin▁of▁sentence|>", | |
"lstrip": False, | |
"normalized": True, | |
"rstrip": False, | |
"single_word": False, | |
}, | |
"clean_up_tokenization_spaces": False, | |
"eos_token": { | |
"__type": "AddedToken", | |
"content": "<|end▁of▁sentence|>", | |
"lstrip": False, | |
"normalized": True, | |
"rstrip": False, | |
"single_word": False, | |
}, | |
"legacy": True, | |
"model_max_length": 16384, | |
"pad_token": { | |
"__type": "AddedToken", | |
"content": "<|end▁of▁sentence|>", | |
"lstrip": False, | |
"normalized": True, | |
"rstrip": False, | |
"single_word": False, | |
}, | |
"sp_model_kwargs": {}, | |
"unk_token": None, | |
"tokenizer_class": "LlamaTokenizerFast", | |
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}", | |
}, | |
"status": "success", | |
}, | |
} | |
OPENAI_FINISH_REASONS = ["stop", "length", "function_call", "content_filter", "null"] | |
HUMANLOOP_PROMPT_CACHE_TTL_SECONDS = int( | |
os.getenv("HUMANLOOP_PROMPT_CACHE_TTL_SECONDS", 60) | |
) # 1 minute | |
RESPONSE_FORMAT_TOOL_NAME = "json_tool_call" # default tool name used when converting response format to tool call | |
########################### Logging Callback Constants ########################### | |
AZURE_STORAGE_MSFT_VERSION = "2019-07-07" | |
PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES = int( | |
os.getenv("PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES", 5) | |
) | |
MCP_TOOL_NAME_PREFIX = "mcp_tool" | |
MAXIMUM_TRACEBACK_LINES_TO_LOG = int(os.getenv("MAXIMUM_TRACEBACK_LINES_TO_LOG", 100)) | |
########################### LiteLLM Proxy Specific Constants ########################### | |
######################################################################################## | |
MAX_SPENDLOG_ROWS_TO_QUERY = int( | |
os.getenv("MAX_SPENDLOG_ROWS_TO_QUERY", 1_000_000) | |
) # if spendLogs has more than 1M rows, do not query the DB | |
DEFAULT_SOFT_BUDGET = float( | |
os.getenv("DEFAULT_SOFT_BUDGET", 50.0) | |
) # by default all litellm proxy keys have a soft budget of 50.0 | |
# makes it clear this is a rate limit error for a litellm virtual key | |
RATE_LIMIT_ERROR_MESSAGE_FOR_VIRTUAL_KEY = "LiteLLM Virtual Key user_api_key_hash" | |
# pass through route constansts | |
BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES = [ | |
"agents/", | |
"knowledgebases/", | |
"flows/", | |
"retrieveAndGenerate/", | |
"rerank/", | |
"generateQuery/", | |
"optimize-prompt/", | |
] | |
BATCH_STATUS_POLL_INTERVAL_SECONDS = int( | |
os.getenv("BATCH_STATUS_POLL_INTERVAL_SECONDS", 3600) | |
) # 1 hour | |
BATCH_STATUS_POLL_MAX_ATTEMPTS = int( | |
os.getenv("BATCH_STATUS_POLL_MAX_ATTEMPTS", 24) | |
) # for 24 hours | |
HEALTH_CHECK_TIMEOUT_SECONDS = int( | |
os.getenv("HEALTH_CHECK_TIMEOUT_SECONDS", 60) | |
) # 60 seconds | |
UI_SESSION_TOKEN_TEAM_ID = "litellm-dashboard" | |
LITELLM_PROXY_ADMIN_NAME = "default_user_id" | |
########################### DB CRON JOB NAMES ########################### | |
DB_SPEND_UPDATE_JOB_NAME = "db_spend_update_job" | |
PROMETHEUS_EMIT_BUDGET_METRICS_JOB_NAME = "prometheus_emit_budget_metrics" | |
SPEND_LOG_CLEANUP_JOB_NAME = "spend_log_cleanup" | |
SPEND_LOG_RUN_LOOPS = int(os.getenv("SPEND_LOG_RUN_LOOPS", 500)) | |
SPEND_LOG_CLEANUP_BATCH_SIZE = int(os.getenv("SPEND_LOG_CLEANUP_BATCH_SIZE", 1000)) | |
DEFAULT_CRON_JOB_LOCK_TTL_SECONDS = int( | |
os.getenv("DEFAULT_CRON_JOB_LOCK_TTL_SECONDS", 60) | |
) # 1 minute | |
PROXY_BUDGET_RESCHEDULER_MIN_TIME = int( | |
os.getenv("PROXY_BUDGET_RESCHEDULER_MIN_TIME", 597) | |
) | |
PROXY_BUDGET_RESCHEDULER_MAX_TIME = int( | |
os.getenv("PROXY_BUDGET_RESCHEDULER_MAX_TIME", 605) | |
) | |
PROXY_BATCH_WRITE_AT = int(os.getenv("PROXY_BATCH_WRITE_AT", 10)) # in seconds | |
DEFAULT_HEALTH_CHECK_INTERVAL = int( | |
os.getenv("DEFAULT_HEALTH_CHECK_INTERVAL", 300) | |
) # 5 minutes | |
PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS = int( | |
os.getenv("PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS", 9) | |
) | |
DEFAULT_MODEL_CREATED_AT_TIME = int( | |
os.getenv("DEFAULT_MODEL_CREATED_AT_TIME", 1677610602) | |
) # returns on `/models` endpoint | |
DEFAULT_SLACK_ALERTING_THRESHOLD = int( | |
os.getenv("DEFAULT_SLACK_ALERTING_THRESHOLD", 300) | |
) | |
MAX_TEAM_LIST_LIMIT = int(os.getenv("MAX_TEAM_LIST_LIMIT", 20)) | |
DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD = float( | |
os.getenv("DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD", 0.7) | |
) | |
LENGTH_OF_LITELLM_GENERATED_KEY = int(os.getenv("LENGTH_OF_LITELLM_GENERATED_KEY", 16)) | |
SECRET_MANAGER_REFRESH_INTERVAL = int( | |
os.getenv("SECRET_MANAGER_REFRESH_INTERVAL", 86400) | |
) | |
LITELLM_SETTINGS_SAFE_DB_OVERRIDES = ["default_internal_user_params"] | |
SPECIAL_LITELLM_AUTH_TOKEN = ["ui-token"] | |
DEFAULT_MANAGEMENT_OBJECT_IN_MEMORY_CACHE_TTL = int( | |
os.getenv("DEFAULT_MANAGEMENT_OBJECT_IN_MEMORY_CACHE_TTL", 60) | |
) | |