DesertWolf's picture
Upload folder using huggingface_hub
447ebeb verified
"""
Translates from OpenAI's `/v1/audio/transcriptions` to Deepgram's `/v1/listen`
"""
import io
from typing import List, Optional, Union
from urllib.parse import urlencode
from httpx import Headers, Response
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import (
AllMessageValues,
OpenAIAudioTranscriptionOptionalParams,
)
from litellm.types.utils import FileTypes, TranscriptionResponse
from ...base_llm.audio_transcription.transformation import (
BaseAudioTranscriptionConfig,
LiteLLMLoggingObj,
)
from ..common_utils import DeepgramException
class DeepgramAudioTranscriptionConfig(BaseAudioTranscriptionConfig):
def get_supported_openai_params(
self, model: str
) -> List[OpenAIAudioTranscriptionOptionalParams]:
return ["language"]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
supported_params = self.get_supported_openai_params(model)
for k, v in non_default_params.items():
if k in supported_params:
optional_params[k] = v
return optional_params
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return DeepgramException(
message=error_message, status_code=status_code, headers=headers
)
def transform_audio_transcription_request(
self,
model: str,
audio_file: FileTypes,
optional_params: dict,
litellm_params: dict,
) -> Union[dict, bytes]:
"""
Processes the audio file input based on its type and returns the binary data.
Args:
audio_file: Can be a file path (str), a tuple (filename, file_content), or binary data (bytes).
Returns:
The binary data of the audio file.
"""
binary_data: bytes # Explicitly declare the type
# Handle the audio file based on type
if isinstance(audio_file, str):
# If it's a file path
with open(audio_file, "rb") as f:
binary_data = f.read() # `f.read()` always returns `bytes`
elif isinstance(audio_file, tuple):
# Handle tuple case
_, file_content = audio_file[:2]
if isinstance(file_content, str):
with open(file_content, "rb") as f:
binary_data = f.read() # `f.read()` always returns `bytes`
elif isinstance(file_content, bytes):
binary_data = file_content
else:
raise TypeError(
f"Unexpected type in tuple: {type(file_content)}. Expected str or bytes."
)
elif isinstance(audio_file, bytes):
# Assume it's already binary data
binary_data = audio_file
elif isinstance(audio_file, io.BufferedReader) or isinstance(
audio_file, io.BytesIO
):
# Handle file-like objects
binary_data = audio_file.read()
else:
raise TypeError(f"Unsupported type for audio_file: {type(audio_file)}")
return binary_data
def transform_audio_transcription_response(
self,
model: str,
raw_response: Response,
model_response: TranscriptionResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
) -> TranscriptionResponse:
"""
Transforms the raw response from Deepgram to the TranscriptionResponse format
"""
try:
response_json = raw_response.json()
# Get the first alternative from the first channel
first_channel = response_json["results"]["channels"][0]
first_alternative = first_channel["alternatives"][0]
# Extract the full transcript
text = first_alternative["transcript"]
# Create TranscriptionResponse object
response = TranscriptionResponse(text=text)
# Add additional metadata matching OpenAI format
response["task"] = "transcribe"
response["language"] = (
"english" # Deepgram auto-detects but doesn't return language
)
response["duration"] = response_json["metadata"]["duration"]
# Transform words to match OpenAI format
if "words" in first_alternative:
response["words"] = [
{"word": word["word"], "start": word["start"], "end": word["end"]}
for word in first_alternative["words"]
]
# Store full response in hidden params
response._hidden_params = response_json
return response
except Exception as e:
raise ValueError(
f"Error transforming Deepgram response: {str(e)}\nResponse: {raw_response.text}"
)
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
if api_base is None:
api_base = (
get_secret_str("DEEPGRAM_API_BASE") or "https://api.deepgram.com/v1"
)
api_base = api_base.rstrip("/") # Remove trailing slash if present
# Build query parameters including the model
all_query_params = {"model": model}
# Add filtered optional parameters
additional_params = self._build_query_params(optional_params, model)
all_query_params.update(additional_params)
# Construct URL with proper query string encoding
base_url = f"{api_base}/listen"
query_string = urlencode(all_query_params)
url = f"{base_url}?{query_string}"
return url
def _should_exclude_param(
self,
param_name: str,
model: str,
) -> bool:
"""
Determines if a parameter should be excluded from the query string.
Args:
param_name: Parameter name
model: Model name
Returns:
True if the parameter should be excluded
"""
# Parameters that are handled elsewhere or not relevant to Deepgram API
excluded_params = {
"model", # Already in the URL path
"OPENAI_TRANSCRIPTION_PARAMS", # Internal litellm parameter
}
# Skip if it's an excluded parameter
if param_name in excluded_params:
return True
# Skip if it's an OpenAI-specific parameter that we handle separately
if param_name in self.get_supported_openai_params(model):
return True
return False
def _format_param_value(self, value) -> str:
"""
Formats a parameter value for use in query string.
Args:
value: The parameter value to format
Returns:
Formatted string value
"""
if isinstance(value, bool):
return str(value).lower()
return str(value)
def _build_query_params(self, optional_params: dict, model: str) -> dict:
"""
Builds a dictionary of query parameters from optional_params.
Args:
optional_params: Dictionary of optional parameters
model: Model name
Returns:
Dictionary of filtered and formatted query parameters
"""
query_params = {}
for key, value in optional_params.items():
# Skip None values
if value is None:
continue
# Skip excluded parameters
if self._should_exclude_param(
param_name=key,
model=model,
):
continue
# Format and add the parameter
formatted_value = self._format_param_value(value)
query_params[key] = formatted_value
return query_params
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
api_key = api_key or get_secret_str("DEEPGRAM_API_KEY")
return {
"Authorization": f"Token {api_key}",
}