Spaces:
Configuration error
Configuration error
import json | |
import os | |
import sys | |
import pytest | |
sys.path.insert( | |
0, os.path.abspath("../..") | |
) # Adds the parent directory to the system path | |
from unittest.mock import MagicMock, patch | |
from pydantic import BaseModel | |
import litellm | |
from litellm.cost_calculator import ( | |
handle_realtime_stream_cost_calculation, | |
response_cost_calculator, | |
) | |
from litellm.types.llms.openai import OpenAIRealtimeStreamList | |
from litellm.types.utils import ModelResponse, PromptTokensDetailsWrapper, Usage | |
def test_cost_calculator_with_response_cost_in_additional_headers(): | |
class MockResponse(BaseModel): | |
_hidden_params = { | |
"additional_headers": {"llm_provider-x-litellm-response-cost": 1000} | |
} | |
result = response_cost_calculator( | |
response_object=MockResponse(), | |
model="", | |
custom_llm_provider=None, | |
call_type="", | |
optional_params={}, | |
cache_hit=None, | |
base_model=None, | |
) | |
assert result == 1000 | |
def test_cost_calculator_with_usage(): | |
from litellm import get_model_info | |
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True" | |
litellm.model_cost = litellm.get_model_cost_map(url="") | |
usage = Usage( | |
prompt_tokens=100, | |
completion_tokens=100, | |
prompt_tokens_details=PromptTokensDetailsWrapper( | |
text_tokens=10, audio_tokens=90 | |
), | |
) | |
mr = ModelResponse(usage=usage, model="gemini-2.0-flash-001") | |
result = response_cost_calculator( | |
response_object=mr, | |
model="", | |
custom_llm_provider="vertex_ai", | |
call_type="acompletion", | |
optional_params={}, | |
cache_hit=None, | |
base_model=None, | |
) | |
model_info = litellm.model_cost["gemini-2.0-flash-001"] | |
expected_cost = ( | |
usage.prompt_tokens_details.audio_tokens | |
* model_info["input_cost_per_audio_token"] | |
+ usage.prompt_tokens_details.text_tokens * model_info["input_cost_per_token"] | |
+ usage.completion_tokens * model_info["output_cost_per_token"] | |
) | |
assert result == expected_cost, f"Got {result}, Expected {expected_cost}" | |
def test_handle_realtime_stream_cost_calculation(): | |
from litellm.cost_calculator import RealtimeAPITokenUsageProcessor | |
# Setup test data | |
results: OpenAIRealtimeStreamList = [ | |
{"type": "session.created", "session": {"model": "gpt-3.5-turbo"}}, | |
{ | |
"type": "response.done", | |
"response": { | |
"usage": {"input_tokens": 100, "output_tokens": 50, "total_tokens": 150} | |
}, | |
}, | |
{ | |
"type": "response.done", | |
"response": { | |
"usage": { | |
"input_tokens": 200, | |
"output_tokens": 100, | |
"total_tokens": 300, | |
} | |
}, | |
}, | |
] | |
combined_usage_object = RealtimeAPITokenUsageProcessor.collect_and_combine_usage_from_realtime_stream_results( | |
results=results, | |
) | |
# Test with explicit model name | |
cost = handle_realtime_stream_cost_calculation( | |
results=results, | |
combined_usage_object=combined_usage_object, | |
custom_llm_provider="openai", | |
litellm_model_name="gpt-3.5-turbo", | |
) | |
# Calculate expected cost | |
# gpt-3.5-turbo costs: $0.0015/1K tokens input, $0.002/1K tokens output | |
expected_cost = (300 * 0.0015 / 1000) + ( # input tokens (100 + 200) | |
150 * 0.002 / 1000 | |
) # output tokens (50 + 100) | |
assert ( | |
abs(cost - expected_cost) <= 0.00075 | |
) # Allow small floating point differences | |
# Test with different model name in session | |
results[0]["session"]["model"] = "gpt-4" | |
cost = handle_realtime_stream_cost_calculation( | |
results=results, | |
combined_usage_object=combined_usage_object, | |
custom_llm_provider="openai", | |
litellm_model_name="gpt-3.5-turbo", | |
) | |
# Calculate expected cost using gpt-4 rates | |
# gpt-4 costs: $0.03/1K tokens input, $0.06/1K tokens output | |
expected_cost = (300 * 0.03 / 1000) + ( # input tokens | |
150 * 0.06 / 1000 | |
) # output tokens | |
assert abs(cost - expected_cost) < 0.00076 | |
# Test with no response.done events | |
results = [{"type": "session.created", "session": {"model": "gpt-3.5-turbo"}}] | |
combined_usage_object = RealtimeAPITokenUsageProcessor.collect_and_combine_usage_from_realtime_stream_results( | |
results=results, | |
) | |
cost = handle_realtime_stream_cost_calculation( | |
results=results, | |
combined_usage_object=combined_usage_object, | |
custom_llm_provider="openai", | |
litellm_model_name="gpt-3.5-turbo", | |
) | |
assert cost == 0.0 # No usage, no cost | |
def test_custom_pricing_with_router_model_id(): | |
from litellm import Router | |
router = Router( | |
model_list=[ | |
{ | |
"model_name": "prod/claude-3-5-sonnet-20240620", | |
"litellm_params": { | |
"model": "anthropic/claude-3-5-sonnet-20240620", | |
"api_key": "test_api_key", | |
}, | |
"model_info": { | |
"id": "my-unique-model-id", | |
"input_cost_per_token": 0.000006, | |
"output_cost_per_token": 0.00003, | |
"cache_creation_input_token_cost": 0.0000075, | |
"cache_read_input_token_cost": 0.0000006, | |
}, | |
}, | |
{ | |
"model_name": "claude-3-5-sonnet-20240620", | |
"litellm_params": { | |
"model": "anthropic/claude-3-5-sonnet-20240620", | |
"api_key": "test_api_key", | |
}, | |
"model_info": { | |
"input_cost_per_token": 100, | |
"output_cost_per_token": 200, | |
}, | |
}, | |
] | |
) | |
result = router.completion( | |
model="claude-3-5-sonnet-20240620", | |
messages=[{"role": "user", "content": "Hello, world!"}], | |
mock_response=True, | |
) | |
result_2 = router.completion( | |
model="prod/claude-3-5-sonnet-20240620", | |
messages=[{"role": "user", "content": "Hello, world!"}], | |
mock_response=True, | |
) | |
assert ( | |
result._hidden_params["response_cost"] | |
> result_2._hidden_params["response_cost"] | |
) | |
model_info = router.get_deployment_model_info( | |
model_id="my-unique-model-id", model_name="anthropic/claude-3-5-sonnet-20240620" | |
) | |
assert model_info is not None | |
assert model_info["input_cost_per_token"] == 0.000006 | |
assert model_info["output_cost_per_token"] == 0.00003 | |
assert model_info["cache_creation_input_token_cost"] == 0.0000075 | |
assert model_info["cache_read_input_token_cost"] == 0.0000006 | |
def test_azure_realtime_cost_calculator(): | |
from litellm import get_model_info | |
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True" | |
litellm.model_cost = litellm.get_model_cost_map(url="") | |
cost = handle_realtime_stream_cost_calculation( | |
results=[ | |
{ | |
"type": "session.created", | |
"session": {"model": "gpt-4o-realtime-preview-2024-12-17"}, | |
}, | |
], | |
combined_usage_object=Usage( | |
prompt_tokens=100, | |
completion_tokens=100, | |
prompt_tokens_details=PromptTokensDetailsWrapper( | |
text_tokens=10, audio_tokens=90 | |
), | |
), | |
custom_llm_provider="azure", | |
litellm_model_name="my-custom-azure-deployment", | |
) | |
assert cost > 0 | |
def test_default_image_cost_calculator(monkeypatch): | |
from litellm.cost_calculator import default_image_cost_calculator | |
temp_object = { | |
"litellm_provider": "azure", | |
"input_cost_per_pixel": 10, | |
} | |
monkeypatch.setattr( | |
litellm, | |
"model_cost", | |
{ | |
"azure/bf9001cd7209f5734ecb4ab937a5a0e2ba5f119708bd68f184db362930f9dc7b": temp_object | |
}, | |
) | |
args = { | |
"model": "azure/bf9001cd7209f5734ecb4ab937a5a0e2ba5f119708bd68f184db362930f9dc7b", | |
"custom_llm_provider": "azure", | |
"quality": "standard", | |
"n": 1, | |
"size": "1024-x-1024", | |
"optional_params": {}, | |
} | |
cost = default_image_cost_calculator(**args) | |
assert cost == 10485760 | |