Spaces:
Sleeping
Sleeping
from ultralytics import YOLO | |
from base64 import b64encode | |
from speech_recognition import AudioFile, Recognizer | |
import numpy as np | |
from scipy.spatial import distance as dist | |
from sahi.utils.cv import read_image_as_pil | |
from fastapi import FastAPI, File, UploadFile, Form | |
from utils import tts, read_image_file, pil_to_base64, base64_to_pil, get_hist | |
from typing import Optional | |
from huggingface_hub import hf_hub_download | |
model_path = hf_hub_download(repo_id="ultralyticsplus/yolov8s", filename='yolov8s.pt') | |
model = YOLO(model_path) | |
CLASS = model.model.names | |
defaul_bot_voice = "γγ―γγγγγγγΎγ" | |
area_thres = 0.3 | |
app = FastAPI() | |
def read_root(): | |
return {"Message": "Application startup complete"} | |
async def predict_api( | |
file: UploadFile = File(...), | |
last_seen: Optional[str] = Form(None) | |
): | |
image = read_image_file(await file.read()) | |
results = model.predict(image, show=False)[0] | |
image = read_image_as_pil(image) | |
masks, boxes = results.masks, results.boxes | |
area_image = image.width * image.height | |
voice_bot = None | |
most_close = 0 | |
out_img = None | |
diff_value = 0.5 | |
if boxes is not None: | |
for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls): | |
if int(cls) != 0: | |
continue | |
box = xyxy.tolist() | |
area_rate = (box[2] - box[0]) * (box[3] - box[1]) / area_image | |
if area_rate >= most_close: | |
out_img = image.crop(tuple(box)).resize((64, 64)) | |
most_close = area_rate | |
if last_seen is not None: | |
last_seen = base64_to_pil(last_seen) | |
if out_img is not None: | |
diff_value = dist.euclidean(get_hist(out_img), get_hist(last_seen)) | |
print(most_close, diff_value) | |
if most_close >= area_thres and diff_value >= 0.5: | |
voice_bot = tts(defaul_bot_voice, language="ja") | |
return { | |
"voice": voice_bot, | |
"image": pil_to_base64(out_img) if out_img is not None else None | |
} |