text-generation / app.py
DevBM's picture
Rename a.py to app.py
f22c37a verified
raw
history blame
1.76 kB
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
from transformers import T5Tokenizer, T5ForConditionalGeneration
st.subheader('Pipe5: Text-To-Text Generation -> Que. Generation',divider='orange')
if st.toggle(label='Show Pipe5'):
models = [
'google/flan-t5-base',
'meta-llama/Meta-Llama-3-8B',
'meta-llama/Meta-Llama-3-8B-Instruct'
]
model_name = st.selectbox(
label='Select Model',
options=models,
placeholder='google/vit-base-patch16-224',
)
if model_name == models[0]:
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = st.text_area(label='Enter the text from which question is to be generated:',value='Bruce Wayne is the Batman.')
input_text = 'Generate a question from this: ' + input_text
input_ids = tokenizer(input_text, return_tensors='pt').input_ids
outputs = model.generate(input_ids)
output_text = tokenizer.decode(outputs[0][1:len(outputs[0])-1])
if st.checkbox(label='Show Tokenized output'):
st.write(outputs)
st.write("Output is:")
st.write(f"{output_text}")
if st.toggle(label='Access model unrestricted'):
input_text = st.text_area('Enter text')
input_ids = tokenizer(input_text, return_tensors='pt').input_ids
outputs = model.generate(input_ids)
st.write(tokenizer.decode(outputs[0]))
st.write(outputs)