|
import streamlit as st
|
|
from transformers import pipeline
|
|
from PIL import Image
|
|
|
|
|
|
st.header(':red[2]',divider='violet')
|
|
|
|
st.subheader('Hotdog or Not Hotdog?')
|
|
pipeline = pipeline(task='image-classification', model='julien-c/hotdog-not-hotdog')
|
|
file_name = st.file_uploader("Upload a hotdog candidate image")
|
|
|
|
if file_name is not None:
|
|
col1, col2 = st.columns(2)
|
|
image = Image.open(file_name)
|
|
col1.image(image, use_column_width=True)
|
|
predictions = pipeline(image)
|
|
col2.header("Probabilities")
|
|
for p in predictions:
|
|
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") |