Spaces:
Sleeping
Sleeping
File size: 848 Bytes
6860ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image
from io import BytesIO
import requests
# Load model and processor
model_name = "Salesforce/blip-image-captioning-large"
processor = BlipProcessor.from_pretrained(model_name)
model = BlipForConditionalGeneration.from_pretrained(model_name)
def generate_caption(image):
# Preprocess the image
inputs = processor(image, return_tensors="pt")
# Generate caption
with torch.no_grad():
outputs = model.generate(**inputs)
# Decode and return caption
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
# Create a Gradio interface
iface = gr.Interface(fn=generate_caption, inputs="image", outputs="text")
iface.launch(share=True) # `share=True` to get a public link |