File size: 848 Bytes
6860ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image
from io import BytesIO
import requests

# Load model and processor
model_name = "Salesforce/blip-image-captioning-large"
processor = BlipProcessor.from_pretrained(model_name)
model = BlipForConditionalGeneration.from_pretrained(model_name)

def generate_caption(image):
    # Preprocess the image
    inputs = processor(image, return_tensors="pt")
    # Generate caption
    with torch.no_grad():
        outputs = model.generate(**inputs)
    # Decode and return caption
    caption = processor.decode(outputs[0], skip_special_tokens=True)
    return caption

# Create a Gradio interface
iface = gr.Interface(fn=generate_caption, inputs="image", outputs="text")
iface.launch(share=True)  # `share=True` to get a public link