Spaces:
Running
Running
Update utils/forex_signals.py
Browse files- utils/forex_signals.py +44 -27
utils/forex_signals.py
CHANGED
@@ -1,65 +1,82 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
def calculate_sma(data, window=14):
|
7 |
-
|
8 |
-
return data['Close'].rolling(window=window).mean()
|
9 |
|
|
|
10 |
def calculate_rsi(data, window=14):
|
11 |
-
|
12 |
-
delta = data['Close'].diff()
|
13 |
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
14 |
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
15 |
rs = gain / loss
|
16 |
rsi = 100 - (100 / (1 + rs))
|
17 |
return rsi
|
18 |
|
|
|
19 |
def calculate_bollinger_bands(data, window=20, num_std_dev=2):
|
20 |
-
|
21 |
-
|
22 |
-
rolling_std = data['Close'].rolling(window=window).std()
|
23 |
upper_band = sma + (rolling_std * num_std_dev)
|
24 |
lower_band = sma - (rolling_std * num_std_dev)
|
25 |
return upper_band, lower_band
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
for pair in currency_pairs:
|
36 |
-
pair_data =
|
|
|
|
|
|
|
37 |
|
38 |
# Calculate technical indicators
|
39 |
sma = calculate_sma(pair_data)
|
40 |
rsi = calculate_rsi(pair_data)
|
41 |
upper_band, lower_band = calculate_bollinger_bands(pair_data)
|
42 |
|
43 |
-
# Example signal generation logic (
|
44 |
for i in range(len(pair_data)):
|
45 |
-
if rsi[i] < 30 and pair_data['
|
46 |
signals.append({
|
47 |
'currency_pair': pair,
|
48 |
-
'entry_time': pair_data[
|
49 |
-
'exit_time': pair_data[
|
50 |
'roi': np.random.uniform(0.1, 1), # Simulated ROI, adjust accordingly
|
51 |
'signal_strength': np.random.uniform(50, 100) # Simulated signal strength
|
52 |
})
|
53 |
-
elif rsi[i] > 70 and pair_data['
|
54 |
signals.append({
|
55 |
'currency_pair': pair,
|
56 |
-
'entry_time': pair_data[
|
57 |
-
'exit_time': pair_data[
|
58 |
'roi': np.random.uniform(0.1, 1), # Simulated ROI, adjust accordingly
|
59 |
'signal_strength': np.random.uniform(50, 100) # Simulated signal strength
|
60 |
})
|
61 |
-
|
62 |
-
# Choose the best signal
|
63 |
-
best_signal = max(signals, key=lambda x: x['roi']) if signals else {}
|
64 |
|
|
|
|
|
|
|
65 |
return {"best_signal": best_signal, "all_signals": signals}
|
|
|
1 |
+
import requests
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
|
5 |
+
# Function to calculate Simple Moving Average (SMA)
|
|
|
6 |
def calculate_sma(data, window=14):
|
7 |
+
return data['close'].rolling(window=window).mean()
|
|
|
8 |
|
9 |
+
# Function to calculate Relative Strength Index (RSI)
|
10 |
def calculate_rsi(data, window=14):
|
11 |
+
delta = data['close'].diff()
|
|
|
12 |
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
13 |
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
14 |
rs = gain / loss
|
15 |
rsi = 100 - (100 / (1 + rs))
|
16 |
return rsi
|
17 |
|
18 |
+
# Function to calculate Bollinger Bands
|
19 |
def calculate_bollinger_bands(data, window=20, num_std_dev=2):
|
20 |
+
sma = calculate_sma(data)
|
21 |
+
rolling_std = data['close'].rolling(window=window).std()
|
|
|
22 |
upper_band = sma + (rolling_std * num_std_dev)
|
23 |
lower_band = sma - (rolling_std * num_std_dev)
|
24 |
return upper_band, lower_band
|
25 |
|
26 |
+
# Function to fetch Forex data from Financial Modeling Prep API
|
27 |
+
def fetch_forex_data(pair, start_date='2020-01-01', end_date='2025-01-01', api_key='your_api_key'):
|
28 |
+
url = f'https://financialmodelingprep.com/api/v3/historical-price-full/{pair}?from={start_date}&to={end_date}&apikey={api_key}'
|
29 |
+
response = requests.get(url)
|
30 |
+
data = response.json()
|
31 |
+
|
32 |
+
if 'historical' in data:
|
33 |
+
df = pd.DataFrame(data['historical'])
|
34 |
+
df['date'] = pd.to_datetime(df['date'])
|
35 |
+
df.set_index('date', inplace=True)
|
36 |
+
return df
|
37 |
+
else:
|
38 |
+
print(f"Error: No data available for {pair}.")
|
39 |
+
return pd.DataFrame()
|
40 |
|
41 |
+
# Function to generate Forex signals
|
42 |
+
def generate_forex_signals(trading_capital, market_risk, user_timezone, additional_pairs=None, api_key='your_api_key'):
|
43 |
+
signals = []
|
44 |
+
|
45 |
+
# List of currency pairs to generate signals for
|
46 |
+
currency_pairs = additional_pairs if additional_pairs else ['EURUSD', 'GBPUSD', 'USDJPY', 'AUDUSD']
|
47 |
+
|
48 |
+
# Loop through each currency pair
|
49 |
for pair in currency_pairs:
|
50 |
+
pair_data = fetch_forex_data(pair, api_key=api_key)
|
51 |
+
|
52 |
+
if pair_data.empty:
|
53 |
+
continue # Skip if no data is available
|
54 |
|
55 |
# Calculate technical indicators
|
56 |
sma = calculate_sma(pair_data)
|
57 |
rsi = calculate_rsi(pair_data)
|
58 |
upper_band, lower_band = calculate_bollinger_bands(pair_data)
|
59 |
|
60 |
+
# Example signal generation logic (buy/sell based on RSI and Bollinger Bands)
|
61 |
for i in range(len(pair_data)):
|
62 |
+
if rsi[i] < 30 and pair_data['close'][i] < lower_band[i]: # Buy signal
|
63 |
signals.append({
|
64 |
'currency_pair': pair,
|
65 |
+
'entry_time': pair_data.index[i],
|
66 |
+
'exit_time': pair_data.index[i] + pd.Timedelta(hours=2), # Example exit time
|
67 |
'roi': np.random.uniform(0.1, 1), # Simulated ROI, adjust accordingly
|
68 |
'signal_strength': np.random.uniform(50, 100) # Simulated signal strength
|
69 |
})
|
70 |
+
elif rsi[i] > 70 and pair_data['close'][i] > upper_band[i]: # Sell signal
|
71 |
signals.append({
|
72 |
'currency_pair': pair,
|
73 |
+
'entry_time': pair_data.index[i],
|
74 |
+
'exit_time': pair_data.index[i] + pd.Timedelta(hours=2), # Example exit time
|
75 |
'roi': np.random.uniform(0.1, 1), # Simulated ROI, adjust accordingly
|
76 |
'signal_strength': np.random.uniform(50, 100) # Simulated signal strength
|
77 |
})
|
|
|
|
|
|
|
78 |
|
79 |
+
# Find the best signal based on highest ROI
|
80 |
+
best_signal = max(signals, key=lambda x: x['roi']) if signals else {}
|
81 |
+
|
82 |
return {"best_signal": best_signal, "all_signals": signals}
|