Devendra21 commited on
Commit
6b5569a
·
verified ·
1 Parent(s): 2e3ec69

Update utils/model_inference.py

Browse files
Files changed (1) hide show
  1. utils/model_inference.py +27 -9
utils/model_inference.py CHANGED
@@ -2,10 +2,30 @@ import numpy as np
2
  import pandas as pd
3
  from datetime import datetime
4
  import pytz
 
5
 
6
- # Import your models and other necessary utilities here
 
7
 
8
- def generate_forex_signals(trading_capital, market_risk, user_timezone):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  # Ensure the user timezone is valid
10
  try:
11
  user_tz = pytz.timezone(user_timezone)
@@ -13,7 +33,6 @@ def generate_forex_signals(trading_capital, market_risk, user_timezone):
13
  raise ValueError("Invalid timezone entered. Please check the format.")
14
 
15
  # Example of how you might process trading capital and risk level:
16
- # Assume this logic is based on the user input for market risk
17
  risk_level = {'Low': 0.01, 'Medium': 0.03, 'High': 0.05}
18
 
19
  if market_risk not in risk_level:
@@ -21,14 +40,13 @@ def generate_forex_signals(trading_capital, market_risk, user_timezone):
21
 
22
  risk_percentage = risk_level[market_risk]
23
 
24
- # Perform model inference based on the user's inputs:
25
- # For example, load the model and predict
26
- # signal = model.predict(features)
27
-
28
  # Dummy signal generation (Replace with your model inference logic)
29
  currency_pair = "EUR/USD"
30
- entry_time = datetime.now(user_tz).strftime("%Y-%m-%d %H:%M:%S")
31
- exit_time = (datetime.now(user_tz) + pd.Timedelta(hours=2)).strftime("%Y-%m-%d %H:%M:%S")
 
 
 
32
  roi = np.random.uniform(5, 15) # Random ROI between 5% and 15%
33
  signal_strength = np.random.uniform(0.7, 1.0) # Random strength between 0.7 and 1.0
34
 
 
2
  import pandas as pd
3
  from datetime import datetime
4
  import pytz
5
+ import requests
6
 
7
+ # Access token for ipinfo.io
8
+ ACCESS_TOKEN = '37b621e95809fa'
9
 
10
+ # Function to get user timezone based on their IP address
11
+ def get_user_timezone():
12
+ try:
13
+ # Get the public IP address of the user
14
+ response = requests.get(f'https://ipinfo.io?token={ACCESS_TOKEN}')
15
+ data = response.json()
16
+
17
+ # Extract the timezone information from the response
18
+ user_timezone = data['timezone']
19
+ return user_timezone
20
+ except Exception as e:
21
+ print(f"Error fetching timezone: {e}")
22
+ return 'UTC' # Fallback to UTC if there's an error
23
+
24
+ # Function to generate forex signals
25
+ def generate_forex_signals(trading_capital, market_risk):
26
+ # Get the user's timezone based on their IP address
27
+ user_timezone = get_user_timezone()
28
+
29
  # Ensure the user timezone is valid
30
  try:
31
  user_tz = pytz.timezone(user_timezone)
 
33
  raise ValueError("Invalid timezone entered. Please check the format.")
34
 
35
  # Example of how you might process trading capital and risk level:
 
36
  risk_level = {'Low': 0.01, 'Medium': 0.03, 'High': 0.05}
37
 
38
  if market_risk not in risk_level:
 
40
 
41
  risk_percentage = risk_level[market_risk]
42
 
 
 
 
 
43
  # Dummy signal generation (Replace with your model inference logic)
44
  currency_pair = "EUR/USD"
45
+
46
+ # Get current time in the user's timezone and format it
47
+ entry_time = datetime.now(user_tz).strftime("%Y-%m-%d %I:%M:%S %p")
48
+ exit_time = (datetime.now(user_tz) + pd.Timedelta(hours=2)).strftime("%Y-%m-%d %I:%M:%S %p")
49
+
50
  roi = np.random.uniform(5, 15) # Random ROI between 5% and 15%
51
  signal_strength = np.random.uniform(0.7, 1.0) # Random strength between 0.7 and 1.0
52