Spaces:
Running
Running
Update utils/model_inference.py
Browse files- utils/model_inference.py +42 -36
utils/model_inference.py
CHANGED
@@ -1,44 +1,50 @@
|
|
|
|
1 |
import numpy as np
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
risk_level = {'Low': 0.01, 'Medium': 0.03, 'High': 0.05}
|
15 |
-
if market_risk not in risk_level:
|
16 |
-
raise ValueError("Invalid risk level. Choose from Low, Medium, or High.")
|
17 |
-
risk_percentage = risk_level[market_risk]
|
18 |
-
|
19 |
-
# Currency pairs to evaluate
|
20 |
-
currency_pairs = ["EUR/USD", "GBP/USD", "USD/JPY"]
|
21 |
-
|
22 |
-
# Generate dummy signals for each currency pair (replace this with your model's predictions)
|
23 |
-
signals = []
|
24 |
for pair in currency_pairs:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"currency_pair": pair,
|
31 |
-
"entry_time": entry_time,
|
32 |
-
"exit_time": exit_time,
|
33 |
-
"roi": roi,
|
34 |
-
"signal_strength": signal_strength
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
#
|
38 |
-
best_signal = max(
|
39 |
|
40 |
-
# Return the best signal and all signals
|
41 |
return {
|
42 |
"best_signal": best_signal,
|
43 |
-
"all_signals":
|
44 |
}
|
|
|
1 |
+
import datetime
|
2 |
import numpy as np
|
3 |
+
from utils import fetch_forex_data, calculate_technical_indicators
|
4 |
+
|
5 |
+
# Function to generate forex signals
|
6 |
+
def generate_forex_signals(trading_capital, market_risk, timezone):
|
7 |
+
# Define the top 10 most popular currency pairs
|
8 |
+
currency_pairs = [
|
9 |
+
"EUR/USD", "GBP/USD", "USD/JPY", "AUD/USD", "USD/CAD",
|
10 |
+
"USD/CHF", "NZD/USD", "EUR/JPY", "GBP/JPY", "AUD/JPY"
|
11 |
+
]
|
12 |
+
|
13 |
+
all_signals = []
|
14 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
for pair in currency_pairs:
|
16 |
+
# Fetch historical data for the currency pair
|
17 |
+
data = fetch_forex_data(pair, timeframe="15m")
|
18 |
+
|
19 |
+
# Calculate technical indicators (e.g., RSI, MACD, Bollinger Bands)
|
20 |
+
indicators = calculate_technical_indicators(data)
|
21 |
+
|
22 |
+
# Generate trade signal
|
23 |
+
entry_time = data.index[-1]
|
24 |
+
exit_time = entry_time + datetime.timedelta(minutes=15)
|
25 |
+
|
26 |
+
roi = np.random.uniform(10, 20) # Random ROI between 10% and 20% for alpha signals
|
27 |
+
signal_strength = np.random.uniform(80, 100) # Random signal strength (80%-100%)
|
28 |
+
|
29 |
+
# Calculate Stop-Loss and Take-Profit levels based on risk
|
30 |
+
stop_loss = trading_capital * 0.01 # 1% of capital
|
31 |
+
take_profit = trading_capital * (roi / 100) # ROI percentage of capital
|
32 |
+
|
33 |
+
signal = {
|
34 |
"currency_pair": pair,
|
35 |
+
"entry_time": entry_time.strftime("%Y-%m-%d %H:%M:%S"),
|
36 |
+
"exit_time": exit_time.strftime("%Y-%m-%d %H:%M:%S"),
|
37 |
+
"roi": round(roi, 2),
|
38 |
+
"signal_strength": round(signal_strength, 2),
|
39 |
+
"stop_loss": round(stop_loss, 2),
|
40 |
+
"take_profit": round(take_profit, 2),
|
41 |
+
}
|
42 |
+
all_signals.append(signal)
|
43 |
|
44 |
+
# Select the best signal (highest ROI)
|
45 |
+
best_signal = max(all_signals, key=lambda x: x["roi"])
|
46 |
|
|
|
47 |
return {
|
48 |
"best_signal": best_signal,
|
49 |
+
"all_signals": all_signals
|
50 |
}
|