Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from datetime import datetime | |
# Initialize session state variables | |
if 'messages' not in st.session_state: | |
st.session_state.messages = [] | |
if "user_input_widget" not in st.session_state: | |
st.session_state.user_input_widget = "" | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B-SFT") | |
model = AutoModelForCausalLM.from_pretrained("amd/AMD-OLMo-1B-SFT") | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
return model, tokenizer | |
def generate_response(prompt, model, tokenizer, history): | |
# Format conversation history with the template | |
bos = tokenizer.eos_token | |
conversation = "" | |
for msg in history: | |
if msg["role"] == "user": | |
conversation += f"<|user|>\n{msg['content']}\n" | |
else: | |
conversation += f"<|assistant|>\n{msg['content']}\n" | |
template = bos + conversation + f"<|user|>\n{prompt}\n<|assistant|>\n" | |
inputs = tokenizer([template], return_tensors='pt', return_token_type_ids=False) | |
if torch.cuda.is_available(): | |
inputs = inputs.to("cuda") | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=1000, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.7 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract only the assistant's last response | |
response = response.split("<|assistant|>\n")[-1].strip() | |
return response | |
def main(): | |
st.set_page_config( | |
page_title="AMD-OLMo Chatbot", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Custom CSS | |
st.markdown(""" | |
<style> | |
.stTab { | |
font-size: 20px; | |
} | |
.model-info { | |
background-color: #f0f2f6; | |
padding: 20px; | |
border-radius: 10px; | |
margin: 10px 0; | |
} | |
.chat-message { | |
padding: 15px; | |
border-radius: 10px; | |
margin: 10px 0; | |
} | |
.user-message { | |
background-color: #e6f3ff; | |
border-left: 5px solid #2e6da4; | |
} | |
.assistant-message { | |
background-color: #f0f2f6; | |
border-left: 5px solid #5cb85c; | |
} | |
.stTextArea textarea { | |
font-size: 16px; | |
} | |
.timestamp { | |
font-size: 12px; | |
color: #666; | |
margin-top: 5px; | |
} | |
.st-emotion-cache-1v0mbdj.e115fcil1 { | |
margin-top: 20px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Create tabs | |
tab1, tab2 = st.tabs(["Model Information", "Chat Interface"]) | |
with tab1: | |
st.title("AMD-OLMo-1B-SFT Model Information") | |
with st.container(): | |
st.markdown(""" | |
<div class="model-info"> | |
<h2>Model Overview</h2> | |
AMD-OLMo-1B-SFT is a state-of-the-art language model developed by AMD. This model represents a significant advancement in AMD's AI capabilities. | |
<h3>Architecture Specifications</h3> | |
| Component | Specification | | |
|-----------|---------------| | |
| Parameters | 1.2B | | |
| Layers | 16 | | |
| Attention Heads | 16 | | |
| Hidden Size | 2048 | | |
| Context Length | 2048 | | |
| Vocabulary Size | 50,280 | | |
<h3>Training Details</h3> | |
- Pre-trained on 1.3 trillion tokens from Dolma v1.7 | |
- Two-phase supervised fine-tuning (SFT): | |
1. Tulu V2 dataset | |
2. OpenHermes-2.5, WebInstructSub, and Code-Feedback datasets | |
<h3>Key Capabilities</h3> | |
- Natural language understanding and generation | |
- Context-aware responses | |
- Code understanding and generation | |
- Complex reasoning tasks | |
- Instruction following | |
- Multi-turn conversations | |
<h3>Hardware Optimization</h3> | |
- Optimized for AMD Instinct™ MI250 GPUs | |
- Distributed training across 16 nodes with 4 GPUs each | |
- Efficient inference on consumer hardware | |
</div> | |
""", unsafe_allow_html=True) | |
with tab2: | |
st.title("Chat with AMD-OLMo") | |
# Load model | |
try: | |
model, tokenizer = load_model() | |
st.success("Model loaded successfully! You can start chatting.") | |
except Exception as e: | |
st.error(f"Error loading model: {str(e)}") | |
return | |
# Chat interface | |
st.markdown("### Chat History") | |
chat_container = st.container() | |
with chat_container: | |
for message in st.session_state.messages: | |
div_class = "user-message" if message["role"] == "user" else "assistant-message" | |
timestamp = message.get("timestamp", datetime.now().strftime("%Y-%m-%d %H:%M:%S")) | |
st.markdown(f""" | |
<div class="chat-message {div_class}"> | |
<b>{message["role"].title()}:</b> {message["content"]} | |
<div class="timestamp">{timestamp}</div> | |
</div> | |
""", unsafe_allow_html=True) | |
# User input section | |
with st.container(): | |
user_input = st.text_area( | |
"Your message:", | |
key="user_input_widget", | |
height=100, | |
placeholder="Type your message here..." | |
) | |
col1, col2, col3 = st.columns([1, 1, 4]) | |
with col1: | |
if st.button("Send", use_container_width=True): | |
if user_input.strip(): | |
# Add user message to history with timestamp | |
st.session_state.messages.append({ | |
"role": "user", | |
"content": user_input, | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
}) | |
# Generate response | |
with st.spinner("Generating response..."): | |
response = generate_response(user_input, model, tokenizer, st.session_state.messages) | |
# Add assistant response to history with timestamp | |
st.session_state.messages.append({ | |
"role": "assistant", | |
"content": response, | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
}) | |
# Clear input | |
st.session_state.user_input_widget = "" | |
st.experimental_rerun() | |
with col2: | |
if st.button("Clear History", use_container_width=True): | |
st.session_state.messages = [] | |
st.session_state.user_input_widget = "" | |
st.experimental_rerun() | |
if __name__ == "__main__": | |
main() |