Dhanush S Gowda
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,143 +1,216 @@
|
|
1 |
import streamlit as st
|
2 |
-
import multiprocessing
|
3 |
-
from transformers import pipeline
|
4 |
-
import os
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
model: Hugging Face summarization pipeline
|
25 |
-
text: Input text to summarize
|
26 |
-
length_percentage: Percentage of original text to use for summary
|
27 |
-
|
28 |
-
Returns:
|
29 |
-
Generated summary
|
30 |
-
"""
|
31 |
-
# Intelligent length calculation
|
32 |
-
word_count = len(text.split())
|
33 |
-
max_length = max(50, int(word_count * length_percentage))
|
34 |
-
min_length = max(30, int(word_count * 0.1))
|
35 |
-
|
36 |
-
try:
|
37 |
-
summary = model(
|
38 |
-
text,
|
39 |
-
max_length=max_length,
|
40 |
-
min_length=min_length,
|
41 |
-
num_beams=4,
|
42 |
-
early_stopping=True
|
43 |
-
)[0]['summary_text']
|
44 |
-
return summary
|
45 |
-
except Exception as e:
|
46 |
-
st.error(f"Summarization error: {e}")
|
47 |
-
return "Could not generate summary."
|
48 |
-
|
49 |
-
def parallel_summarize(text, length_percentage=0.3):
|
50 |
-
"""
|
51 |
-
Generate summaries in parallel using multiprocessing.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
text: Input text to summarize
|
55 |
-
length_percentage: Percentage of original text to use for summary
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def main():
|
75 |
st.set_page_config(
|
76 |
-
page_title="
|
77 |
-
page_icon="
|
78 |
layout="wide"
|
79 |
)
|
80 |
|
81 |
-
|
82 |
-
st.title("🤖 Advanced Text Summarization")
|
83 |
-
st.markdown("""
|
84 |
-
Generate concise summaries using multiple state-of-the-art models.
|
85 |
-
Intelligently adapts summary length based on input text.
|
86 |
-
""")
|
87 |
|
88 |
-
#
|
|
|
|
|
|
|
89 |
text_input = st.text_area(
|
90 |
-
"
|
91 |
-
height=
|
92 |
-
help="Enter the text you want to summarize"
|
93 |
)
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
if not text_input:
|
107 |
-
st.warning("Please
|
108 |
return
|
109 |
|
110 |
-
|
111 |
progress_bar = st.progress(0)
|
112 |
-
|
113 |
-
stages = ["Initializing Models", "Running BART", "Running T5", "Running Pegasus", "Completed"]
|
114 |
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
-
progress_text.success("Summarization Complete!")
|
124 |
progress_bar.progress(100)
|
|
|
125 |
|
126 |
-
|
127 |
cols = st.columns(3)
|
128 |
-
|
129 |
for (col, (model, summary)) in zip(cols, summaries.items()):
|
130 |
with col:
|
131 |
-
st.
|
132 |
st.write(summary)
|
133 |
-
st.caption(f"Word Count: {len(summary.split())}")
|
134 |
|
135 |
except Exception as e:
|
136 |
-
st.error(f"
|
137 |
|
138 |
finally:
|
139 |
-
progress_text.empty()
|
140 |
progress_bar.empty()
|
|
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
import concurrent.futures
|
5 |
+
import numpy as np
|
6 |
+
import psutil
|
7 |
+
import os
|
8 |
|
9 |
+
class UltraOptimizedSummarizer:
|
10 |
+
def __init__(self):
|
11 |
+
# Advanced caching and memory management
|
12 |
+
self.models = {}
|
13 |
+
self.tokenizers = {}
|
14 |
+
self.device = self._get_optimal_device()
|
15 |
+
|
16 |
+
def _get_optimal_device(self):
|
17 |
+
"""Intelligently select the best computational device."""
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
# Find the GPU with most free memory
|
20 |
+
gpu_memory = [torch.cuda.memory_allocated(i) for i in range(torch.cuda.device_count())]
|
21 |
+
best_gpu = np.argmin(gpu_memory)
|
22 |
+
return torch.device(f'cuda:{best_gpu}')
|
23 |
+
elif torch.backends.mps.is_available():
|
24 |
+
return torch.device('mps')
|
25 |
+
return torch.device('cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def _load_model(self, model_name):
|
28 |
+
"""
|
29 |
+
Optimized model loading with advanced memory management.
|
30 |
+
Uses half-precision (float16) for reduced memory footprint.
|
31 |
+
"""
|
32 |
+
if model_name in self.models:
|
33 |
+
return self.models[model_name], self.tokenizers[model_name]
|
34 |
+
|
35 |
+
try:
|
36 |
+
# Load tokenizer
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='/tmp/huggingface_cache')
|
38 |
+
|
39 |
+
# Load model with optimization
|
40 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
41 |
+
model_name,
|
42 |
+
cache_dir='/tmp/huggingface_cache',
|
43 |
+
torch_dtype=torch.float16 if self.device.type == 'cuda' else torch.float32,
|
44 |
+
low_cpu_mem_usage=True
|
45 |
+
).to(self.device)
|
46 |
+
|
47 |
+
# Optional: Model compilation for additional speed (PyTorch 2.0+)
|
48 |
+
if hasattr(torch, 'compile'):
|
49 |
+
model = torch.compile(model)
|
50 |
+
|
51 |
+
self.models[model_name] = model
|
52 |
+
self.tokenizers[model_name] = tokenizer
|
53 |
+
|
54 |
+
return model, tokenizer
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
st.error(f"Model loading error for {model_name}: {e}")
|
58 |
+
return None, None
|
59 |
|
60 |
+
def summarize(self, text, model_name, max_length=150, min_length=50):
|
61 |
+
"""
|
62 |
+
Ultra-optimized summarization with intelligent truncation.
|
63 |
+
"""
|
64 |
+
model, tokenizer = self._load_model(model_name)
|
65 |
+
if not model or not tokenizer:
|
66 |
+
return "Summarization failed."
|
67 |
|
68 |
+
try:
|
69 |
+
# Intelligent text truncation
|
70 |
+
inputs = tokenizer(
|
71 |
+
text,
|
72 |
+
max_length=1024, # Prevent OOM errors
|
73 |
+
truncation=True,
|
74 |
+
return_tensors='pt'
|
75 |
+
).to(self.device)
|
76 |
+
|
77 |
+
# Generate summary with optimized parameters
|
78 |
+
summary_ids = model.generate(
|
79 |
+
inputs['input_ids'],
|
80 |
+
num_beams=4,
|
81 |
+
max_length=max_length,
|
82 |
+
min_length=min_length,
|
83 |
+
early_stopping=True,
|
84 |
+
no_repeat_ngram_size=2,
|
85 |
+
do_sample=False
|
86 |
+
)
|
87 |
+
|
88 |
+
# Decode summary
|
89 |
+
summary = tokenizer.decode(
|
90 |
+
summary_ids[0],
|
91 |
+
skip_special_tokens=True
|
92 |
+
)
|
93 |
+
|
94 |
+
return summary
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
st.error(f"Summarization error for {model_name}: {e}")
|
98 |
+
return "Could not generate summary."
|
99 |
|
100 |
+
def parallel_summarize(self, text, max_length=150, min_length=50):
|
101 |
+
"""
|
102 |
+
Concurrent summarization with advanced thread pooling.
|
103 |
+
"""
|
104 |
+
model_configs = [
|
105 |
+
"facebook/bart-large-cnn",
|
106 |
+
"t5-large",
|
107 |
+
"google/pegasus-cnn_dailymail"
|
108 |
+
]
|
109 |
+
|
110 |
+
# Dynamic thread count based on system resources
|
111 |
+
max_workers = min(
|
112 |
+
len(model_configs),
|
113 |
+
psutil.cpu_count(logical=False), # Physical cores
|
114 |
+
4 # Cap at 4 to prevent resource exhaustion
|
115 |
+
)
|
116 |
+
|
117 |
+
# Use concurrent futures for true parallel processing
|
118 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
119 |
+
# Submit summarization tasks
|
120 |
+
future_to_model = {
|
121 |
+
executor.submit(
|
122 |
+
self.summarize,
|
123 |
+
text,
|
124 |
+
model,
|
125 |
+
max_length,
|
126 |
+
min_length
|
127 |
+
): model for model in model_configs
|
128 |
+
}
|
129 |
+
|
130 |
+
# Collect results as they complete
|
131 |
+
summaries = {}
|
132 |
+
for future in concurrent.futures.as_completed(future_to_model):
|
133 |
+
model = future_to_model[future]
|
134 |
+
try:
|
135 |
+
summaries[model] = future.result()
|
136 |
+
except Exception as e:
|
137 |
+
summaries[model] = f"Error: {e}"
|
138 |
+
|
139 |
+
return summaries
|
140 |
|
141 |
def main():
|
142 |
st.set_page_config(
|
143 |
+
page_title="Ultra-Optimized Summarization",
|
144 |
+
page_icon="🚀",
|
145 |
layout="wide"
|
146 |
)
|
147 |
|
148 |
+
st.title("🔬 Hyper-Optimized Text Summarization")
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
# Initialize optimized summarizer
|
151 |
+
summarizer = UltraOptimizedSummarizer()
|
152 |
+
|
153 |
+
# Input and processing
|
154 |
text_input = st.text_area(
|
155 |
+
"Enter text for advanced summarization:",
|
156 |
+
height=300
|
|
|
157 |
)
|
158 |
|
159 |
+
# Advanced compression control
|
160 |
+
col1, col2 = st.columns(2)
|
161 |
+
with col1:
|
162 |
+
max_length = st.slider(
|
163 |
+
"Max Summary Length",
|
164 |
+
min_value=50,
|
165 |
+
max_value=300,
|
166 |
+
value=150
|
167 |
+
)
|
168 |
|
169 |
+
with col2:
|
170 |
+
compression_rate = st.slider(
|
171 |
+
"Compression Aggressiveness",
|
172 |
+
min_value=0.1,
|
173 |
+
max_value=0.5,
|
174 |
+
value=0.3,
|
175 |
+
step=0.05
|
176 |
+
)
|
177 |
+
|
178 |
+
if st.button("Generate Hyper-Optimized Summaries"):
|
179 |
if not text_input:
|
180 |
+
st.warning("Please provide text to summarize.")
|
181 |
return
|
182 |
|
183 |
+
# Progress tracking
|
184 |
progress_bar = st.progress(0)
|
185 |
+
status_text = st.empty()
|
|
|
186 |
|
187 |
try:
|
188 |
+
# Perform parallel summarization
|
189 |
+
status_text.info("Initializing ultra-optimized summarization...")
|
190 |
+
progress_bar.progress(20)
|
191 |
+
|
192 |
+
summaries = summarizer.parallel_summarize(
|
193 |
+
text_input,
|
194 |
+
max_length=max_length,
|
195 |
+
min_length=int(max_length * 0.5)
|
196 |
+
)
|
197 |
|
|
|
198 |
progress_bar.progress(100)
|
199 |
+
status_text.success("Summarization Complete!")
|
200 |
|
201 |
+
# Display results
|
202 |
cols = st.columns(3)
|
|
|
203 |
for (col, (model, summary)) in zip(cols, summaries.items()):
|
204 |
with col:
|
205 |
+
st.subheader(model.split('/')[-1].upper())
|
206 |
st.write(summary)
|
|
|
207 |
|
208 |
except Exception as e:
|
209 |
+
st.error(f"Optimization failed: {e}")
|
210 |
|
211 |
finally:
|
|
|
212 |
progress_bar.empty()
|
213 |
+
status_text.empty()
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
main()
|