File size: 9,900 Bytes
5a2a081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a86ae4
 
 
 
 
5a2a081
 
 
 
 
 
 
 
 
 
 
 
14b4e85
 
 
 
 
 
 
 
 
 
 
 
5a2a081
14b4e85
 
 
 
5a2a081
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import io
import random
import os
import time
import numpy as np
import subprocess
import torch
import json
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
from deep_translator import GoogleTranslator
from datetime import datetime
from model import models
from theme import theme
from fastapi import FastAPI

app = FastAPI()


API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
max_images = 6

def flip_image(x):
    return np.fliplr(x)

def clear():
  return None    

def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152):
    if prompt == "" or prompt == None:
        return None

    if lora_id.strip() == "" or lora_id == None:
        lora_id = "black-forest-labs/FLUX.1-dev"

    key = random.randint(0, 999)

    API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()

    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")

    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image, seed
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None
        
with gr.Group():
    examples = [
        "a beautiful woman with blonde hair and blue eyes",
        "a beautiful woman with brown hair and grey eyes",
        "a beautiful woman with black hair and brown eyes",
    ]



css = """
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.model_info { text-align: center; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
"""

with gr.Blocks(theme=theme, fill_width=True, css=css) as app:
    with gr.Tab("Image Generator"):
        with gr.Row():
            with gr.Column(scale=10, elem_id="prompt-container"): 
                with gr.Group():
                    with gr.Row(equal_height=True):
                        text_prompt = gr.Textbox(label="Image Prompt โœ๏ธ", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
                    with gr.Row():
                        with gr.Accordion("๐ŸŽจ Lora trigger words", open=False):
                            gr.Markdown("""
                                        - **Canopus-Pencil-Art-LoRA**: Pencil Art
                                        - **Flux-Realism-FineDetailed**: Fine Detailed
                                        - **Fashion-Hut-Modeling-LoRA**: Modeling
                                        - **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
                                        - **Flux-Fine-Detail-LoRA**: Super Detail
                                        - **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
                                        - **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic 
                                        - **Canopus-Pencil-Art-LoRA**: Pencil Art
                                        - **SD3.5-Large-Photorealistic-LoRA**: photorealistic
                                        - **Flux.1-Dev-LoRA-HDR-Realism**: HDR
                                        - **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
                                        - **john-singer-sargent-style**: John Singer Sargent Style
                                        - **alphonse-mucha-style**: Alphonse Mucha Style
                                        - **ultra-realistic-illustration**: ultra realistic illustration
                                        - **eye-catching**: eye-catching
                                        - **john-constable-style**: John Constable Style
                                        - **film-noir**: in the style of FLMNR
                                        - **flux-lora-pro-headshot**: PROHEADSHOT
                            		""")
                        with gr.Row():
                            custom_lora = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
                    with gr.Accordion("Advanced options", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value="(((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features,  (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes")
                        with gr.Row(equal_height=True):
                                width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32)
                                height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
                                strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1)    
                                steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
                                cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                                seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)                           
                                method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 Karras", "DPM2 a Karras", "DPM++ SDE Karras", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral",  "DEIS", "DDIM", "Euler CFG PP", "Euler", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "LMS", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
                        with gr.Row(equal_height=True):
                            with gr.Accordion("๐Ÿซ˜Seed", open=False):
                                seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
                    with gr.Row(equal_height=True):
                        image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
                    # Add a button to trigger the image generation    
                with gr.Row(equal_height=True):
                    text_button = gr.Button("Generate Image ๐ŸŽจ", variant='primary', elem_id="gen-button")
                    clear_prompt =gr.Button("Clear Prompt ๐Ÿ—‘๏ธ",variant="primary", elem_id="clear_button")
                    clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)

                with gr.Column(scale=10): 
                    with gr.Group():
                        with gr.Row():
                            image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
    
                    with gr.Group():
                        with gr.Row():
                            gr.Examples(
                                examples = examples,
                                inputs = [text_prompt],
                            )
    
                     with gr.Group(): 
                    with gr.Row():
                        clear_results = gr.Button(value="Clear Image ๐Ÿ—‘๏ธ", variant="primary", elem_id="clear_button")
                        clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
                        
                    text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])

   app.queue(default_concurrency_limit=200, max_size=200)  # <-- Sets up a queue with default parameters
    if __name__ == "__main__":
        timeout = 100
        app.launch(show_api=False, share=False)