Spaces:
Sleeping
Sleeping
File size: 9,900 Bytes
5a2a081 1a86ae4 5a2a081 14b4e85 5a2a081 14b4e85 5a2a081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import io
import random
import os
import time
import numpy as np
import subprocess
import torch
import json
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
from deep_translator import GoogleTranslator
from datetime import datetime
from model import models
from theme import theme
from fastapi import FastAPI
app = FastAPI()
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
max_images = 6
def flip_image(x):
return np.fliplr(x)
def clear():
return None
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152):
if prompt == "" or prompt == None:
return None
if lora_id.strip() == "" or lora_id == None:
lora_id = "black-forest-labs/FLUX.1-dev"
key = random.randint(0, 999)
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image, seed
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
with gr.Group():
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
css = """
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.model_info { text-align: center; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
"""
with gr.Blocks(theme=theme, fill_width=True, css=css) as app:
with gr.Tab("Image Generator"):
with gr.Row():
with gr.Column(scale=10, elem_id="prompt-container"):
with gr.Group():
with gr.Row(equal_height=True):
text_prompt = gr.Textbox(label="Image Prompt โ๏ธ", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("๐จ Lora trigger words", open=False):
gr.Markdown("""
- **Canopus-Pencil-Art-LoRA**: Pencil Art
- **Flux-Realism-FineDetailed**: Fine Detailed
- **Fashion-Hut-Modeling-LoRA**: Modeling
- **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
- **Flux-Fine-Detail-LoRA**: Super Detail
- **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
- **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic
- **Canopus-Pencil-Art-LoRA**: Pencil Art
- **SD3.5-Large-Photorealistic-LoRA**: photorealistic
- **Flux.1-Dev-LoRA-HDR-Realism**: HDR
- **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
- **john-singer-sargent-style**: John Singer Sargent Style
- **alphonse-mucha-style**: Alphonse Mucha Style
- **ultra-realistic-illustration**: ultra realistic illustration
- **eye-catching**: eye-catching
- **john-constable-style**: John Constable Style
- **film-noir**: in the style of FLMNR
- **flux-lora-pro-headshot**: PROHEADSHOT
""")
with gr.Row():
custom_lora = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value="(((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes")
with gr.Row(equal_height=True):
width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1)
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 Karras", "DPM2 a Karras", "DPM++ SDE Karras", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "DEIS", "DDIM", "Euler CFG PP", "Euler", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "LMS", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
with gr.Row(equal_height=True):
with gr.Accordion("๐ซSeed", open=False):
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
with gr.Row(equal_height=True):
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
# Add a button to trigger the image generation
with gr.Row(equal_height=True):
text_button = gr.Button("Generate Image ๐จ", variant='primary', elem_id="gen-button")
clear_prompt =gr.Button("Clear Prompt ๐๏ธ",variant="primary", elem_id="clear_button")
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)
with gr.Column(scale=10):
with gr.Group():
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
with gr.Group():
with gr.Row():
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
with gr.Group():
with gr.Row():
clear_results = gr.Button(value="Clear Image ๐๏ธ", variant="primary", elem_id="clear_button")
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters
if __name__ == "__main__":
timeout = 100
app.launch(show_api=False, share=False)
|