File size: 16,618 Bytes
5a2a081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c3e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a2a081
 
 
 
 
1a86ae4
 
 
 
 
5a2a081
 
 
 
 
 
 
 
 
 
 
 
14b4e85
 
 
 
 
 
 
 
 
 
 
5952a86
857f7d0
 
 
14b4e85
 
5a2a081
857f7d0
5a2a081
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import gradio as gr
import io
import random
import os
import time
import numpy as np
import subprocess
import torch
import json
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
from deep_translator import GoogleTranslator
from datetime import datetime
from model import models
from theme import theme
from fastapi import FastAPI

app = FastAPI()


API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
max_images = 6

def flip_image(x):
    return np.fliplr(x)

def clear():
  return None    

def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152):
    if prompt == "" or prompt == None:
        return None

    if lora_id.strip() == "" or lora_id == None:
        lora_id = "black-forest-labs/FLUX.1-dev"

    key = random.randint(0, 999)

    API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()

    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")

    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image, seed
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None
        
with gr.Group():
    examples = [
        "a beautiful woman with blonde hair and blue eyes",
        "a beautiful woman with brown hair and grey eyes",
        "a beautiful woman with black hair and brown eyes",
    ]



css = """
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.model_info { text-align: center; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
"""

with gr.Blocks(theme=theme, fill_width=True, css=css) as app:
    with gr.Tab("Image Generator"):
        with gr.Row():
            with gr.Column(scale=10, elem_id="prompt-container"): 
                with gr.Group():
                    with gr.Row(equal_height=True):
                        text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
                    with gr.Row():
                        with gr.Accordion("🎨 Lora trigger words", open=False):
                            gr.Markdown("""
                                        - **Canopus-Pencil-Art-LoRA**: Pencil Art
                                        - **Flux-Realism-FineDetailed**: Fine Detailed
                                        - **Fashion-Hut-Modeling-LoRA**: Modeling
                                        - **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
                                        - **Flux-Fine-Detail-LoRA**: Super Detail
                                        - **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
                                        - **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic 
                                        - **Canopus-Pencil-Art-LoRA**: Pencil Art
                                        - **SD3.5-Large-Photorealistic-LoRA**: photorealistic
                                        - **Flux.1-Dev-LoRA-HDR-Realism**: HDR
                                        - **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
                                        - **john-singer-sargent-style**: John Singer Sargent Style
                                        - **alphonse-mucha-style**: Alphonse Mucha Style
                                        - **ultra-realistic-illustration**: ultra realistic illustration
                                        - **eye-catching**: eye-catching
                                        - **john-constable-style**: John Constable Style
                                        - **film-noir**: in the style of FLMNR
                                        - **flux-lora-pro-headshot**: PROHEADSHOT
                            		""")
                        with gr.Row():
                            custom_lora = 
FLUX.Dev-LORA
/ app.py
DigiP-AI's picture
DigiP-AI
Update app.py
9026664
verified
1 day ago
raw
history
blame
edit
delete
11.8 kB
#!/usr/bin/env python
import gradio as gr
import requests
import io
import random
import os
import time
import numpy as np
import subprocess
import torch
import json
import uuid
import spaces
from typing import Tuple
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
from deep_translator import GoogleTranslator
from datetime import datetime
from theme import theme
from typing import Tuple
from fastapi import FastAPI

app = FastAPI()



API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def flip_image(x):
    return np.fliplr(x)

def clear():
  return None    

def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152):
    if prompt == "" or prompt == None:
        return None

    if lora_id.strip() == "" or lora_id == None:
        lora_id = "black-forest-labs/FLUX.1-dev"

    key = random.randint(0, 999)

    API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()

    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    # print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")

    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image, seed
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

examples = [
    "a beautiful woman with blonde hair and blue eyes",
    "a beautiful woman with brown hair and grey eyes",
    "a beautiful woman with black hair and brown eyes",
]

css = """
#app-container {
    max-width: 930px;
    margin-left: auto;
    margin-right: auto;
}
".gradio-container {background: url('file=abstract.jpg')}
   
"""
with gr.Blocks(theme=theme, css=css, elem_id="app-container") as app:
    gr.HTML("<center><h6>🎨 FLUX.1-Dev with LoRA πŸ‡¬πŸ‡§</h6></center>")
    with gr.Tab("Text to Image"):
        with gr.Column(elem_id="app-container"):
            with gr.Row():
                with gr.Column(elem_id="prompt-container"):
                    with gr.Group():
                        with gr.Row():
                            text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
                        with gr.Row():
                            with gr.Accordion("🎨 Lora trigger words", open=False):
                            		gr.Markdown("""
                                        - **Canopus-Pencil-Art-LoRA**: Pencil Art
                                        - **Flux-Realism-FineDetailed**: Fine Detailed
                                        - **Fashion-Hut-Modeling-LoRA**: Modeling
                                        - **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
                                        - **Flux-Fine-Detail-LoRA**: Super Detail
                                        - **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
                                        - **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic 
                                        - **Canopus-Pencil-Art-LoRA**: Pencil Art
                                        - **SD3.5-Large-Photorealistic-LoRA**: photorealistic
                                        - **Flux.1-Dev-LoRA-HDR-Realism**: HDR
                                        - **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
                                        - **john-singer-sargent-style**: John Singer Sargent Style
                                        - **alphonse-mucha-style**: Alphonse Mucha Style
                                        - **ultra-realistic-illustration**: ultra realistic illustration
                                        - **eye-catching**: eye-catching
                                        - **john-constable-style**: John Constable Style
                                        - **film-noir**: in the style of FLMNR
                                        - **flux-lora-pro-headshot**: PROHEADSHOT
                            		""")                       
                                
                        with gr.Row():
                            custom_lora = gr.Dropdown([" ", "prithivMLmods/Canopus-Pencil-Art-LoRA", "prithivMLmods/Flux-Realism-FineDetailed", "prithivMLmods/Fashion-Hut-Modeling-LoRA", "prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", "prithivMLmods/Flux-Fine-Detail-LoRA", "prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", "hugovntr/flux-schnell-realism", "fofr/sdxl-deep-down", "prithivMLmods/Canopus-LoRA-Flux-UltraRealism-2.0", "prithivMLmods/Canopus-Realism-LoRA", "prithivMLmods/Canopus-LoRA-Flux-FaceRealism", "prithivMLmods/SD3.5-Large-Photorealistic-LoRA", "prithivMLmods/Flux.1-Dev-LoRA-HDR-Realism", "prithivMLmods/Ton618-Epic-Realism-Flux-LoRA", "KappaNeuro/john-singer-sargent-style", "KappaNeuro/alphonse-mucha-style", "ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration", "ntc-ai/SDXL-LoRA-slider.eye-catching", "KappaNeuro/john-constable-style", "dvyio/flux-lora-film-noir", "dvyio/flux-lora-pro-headshot"], label="Custom LoRA",)
                    with gr.Accordion("Advanced options", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value="(((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features,  (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes")
                        with gr.Row(equal_height=True):
                                width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32)
                                height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
                                strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1)    
                                steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
                                cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                                seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)                           
                                method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 Karras", "DPM2 a Karras", "DPM++ SDE Karras", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral",  "DEIS", "DDIM", "Euler CFG PP", "Euler", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "LMS", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
                        with gr.Row(equal_height=True):
                            with gr.Accordion("🫘Seed", open=False):
                                seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
                    with gr.Row(equal_height=True):
                        image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
                    # Add a button to trigger the image generation    
                with gr.Row(equal_height=True):
                    text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button")
                    clear_prompt =gr.Button("Clear Prompt πŸ—‘οΈ",variant="primary", elem_id="clear_button")
                    clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)

                with gr.Column(scale=10): 
                    with gr.Group():
                        with gr.Row():
                            image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
    
                    with gr.Group():
                        with gr.Row():
                            gr.Examples(
                                examples = examples,
                                inputs = [text_prompt],
                            )
    
                    with gr.Group(): 
                        with gr.Row():
                            clear_results = gr.Button(value="Clear Image πŸ—‘οΈ", variant="primary", elem_id="clear_button")
                            clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
                        
                    text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])

    pp.queue(default_concurrency_limit=200, max_size=200)  # <-- Sets up a queue with default parameters
    if __name__ == "__main__":
        timeout = 100
        app.launch(show_api=False, share=False)