File size: 10,849 Bytes
5489ddf ed3b341 c23afe0 4eee1a2 5489ddf 749b703 5489ddf 749b703 312a433 5489ddf ed3b341 5489ddf ed3b341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import gradio as gr
import base64
import requests
import os
from PIL import Image
from io import BytesIO
from mistralai import Mistral
from theme import theme
from fastapi import FastAPI
app = FastAPI()
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
def encode_image(image_path):
"""Encode the image to base64."""
try:
# Open the image file
image = Image.open(image_path).convert("RGB")
# Resize the image to a height of 512 while maintaining the aspect ratio
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
# Convert the image to a byte stream
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Add generic exception handling
print(f"Error: {e}")
return None
def feifeichat(image):
try:
model = "pixtral-large-2411"
# Define the messages for the chat
base64_image = encode_image(image)
messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": "Please provide a detailed description of this photo"
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
},
],
"stream": False,
}]
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content is not None:
partial_message = partial_message + chunk.data.choices[
0].delta.content
yield partial_message
except Exception as e: # 添加通用异常处理
print(f"Error: {e}")
return "Please upload a photo"
with gr.Blocks(theme=theme, elem_id="app-container") as app:
gr.Markdown("Image To Flux Prompt")
with gr.Tab(label="Image To Prompt"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture",height=320,type="filepath")
submit_btn = gr.Button(value="Submit", variant='primary')
with gr.Column():
output_text = gr.Textbox(label="Flux Prompt", show_copy_button = True)
clr_button =gr.Button("Clear",variant="primary", elem_id="clear_button")
clr_button.click(lambda: gr.Textbox(value=""), None, output_text)
submit_btn.click(feifeichat, [input_img], [output_text])
# Project by Nymbo
# Edited by DigiP-AI
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
# Function to clear input and output
def clear():
return None
# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152):
if prompt == "" or prompt is None:
return None
key = random.randint(0, 999)
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# Translate the prompt from Russian to English if necessary
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
# Add some extra flair to the prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
# Send the request to the API and handle the response
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
# Convert the response content into an image
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
# CSS to style the app
css = """
footer{display:none !important}
#app-container {
max-width: 930px;
margin-left: auto;
margin-right: auto;
}
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme=theme, css=css) as app:
# Add a title to the app
gr.HTML("<center><h1>🎨 Stable Diffusion 3.5 large turbo 🇬🇧</h1></center>")
with gr.Tabs() as tabs:
with gr.TabItem("Text to Image"):
# Container for all the UI elements
with gr.Column(elem_id="app-container"):
# Add a text input for the main prompt
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Group():
with gr.Row():
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
# Accordion for advanced settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", lines=4, placeholder="What should not be in the image", value="(hands:-1.25), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, bad face, (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, poor facial details, (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2)")
with gr.Row():
width = gr.Slider(label="ImageWidth", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=1)
strength = gr.Slider(label="PromptStrength", value=100, minimum=0, maximum=100, step=1)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button")
clear_prompt =gr.Button("Clear Prompt 🗑️",variant="primary", elem_id="clear_button")
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)
with gr.Group():
# Image output area to display the generated image
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
with gr.Row():
clear_results = gr.Button(value="Clear Image 🗑️", variant="primary", elem_id="clear_button")
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
# Bind the button to the query function with the added width and height inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
with gr.TabItem("Tips", visible=True):
with gr.Row():
gr.Markdown(
"""
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
<ol style="padding-left: 1.5rem;">
<li>Enter a detailed description of the image you want to create.</li>
<li>Adjust advanced settings if desired (tap to expand).</li>
<li>Tap "Generate Image" and wait for your creation!</li>
</ol>
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
</div>
"""
)
if __name__ == "__main__":
app.launch()
|