File size: 8,418 Bytes
c69a273 041cde8 c69a273 041cde8 7ac4458 b79c29e c69a273 041cde8 c69a273 041cde8 c69a273 041cde8 c69a273 041cde8 c69a273 041cde8 c69a273 041cde8 c69a273 43511ce c69a273 43511ce c69a273 041cde8 c69a273 041cde8 c69a273 041cde8 c69a273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# imports
import base64
import os
import streamlit as st
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np
# load css
def load_local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
load_local_css("./styles/style.css")
# bootstrap
st.markdown(
"""<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-QWTKZyjpPEjISv5WaRU9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW+ALEwIH" crossorigin="anonymous">""",
unsafe_allow_html=True
)
# load model weights
@st.cache_resource
def load_models():
# Load all models at once
eff_net_model = tf.keras.models.load_model('EfficientNet_Models/efficientnetb3_binary_classifier_8.h5')
eff_net_art_model = tf.keras.models.load_model('EfficientNet_Models/EfficientNet_fine_tune_art_model.h5')
cnn_model = 'CNN_model_weight/model_weights.weights.h5'
return eff_net_model, eff_net_art_model, cnn_model
# Access cached models
eff_net_model, eff_net_art_model, cnn_model = load_models()
# CNN model
def run_cnn(img_arr):
my_model = Sequential()
my_model.add(Conv2D(
filters=16,
kernel_size=(3, 3),
strides=(1, 1),
activation='relu',
input_shape=(256, 256, 3)
))
my_model.add(BatchNormalization())
my_model.add(MaxPooling2D())
my_model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu'))
my_model.add(BatchNormalization())
my_model.add(MaxPooling2D())
my_model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
my_model.add(BatchNormalization())
my_model.add(MaxPooling2D())
my_model.add(Flatten())
my_model.add(Dense(512, activation='relu'))
my_model.add(Dropout(0.09))
my_model.add(Dense(1, activation='sigmoid'))
my_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Load the pre-trained weights
my_model.load_weights(cnn_model)
prediction = my_model.predict(img_arr)
return prediction
# efficientnet model
def run_effNet(img_arr):
try:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
except ValueError:
strategy = tf.distribute.get_strategy()
with strategy.scope():
prediction = eff_net_model.predict(img_arr)
return prediction
# efficientnet art model
def run_effNet_Art(img_arr):
try:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.TPUStrategy(resolver)
except ValueError:
strategy = tf.distribute.get_strategy()
with strategy.scope():
prediction = eff_net_art_model.predict(img_arr)
return prediction
# preprocess images for efficient net
def pre_process_img_effNet(image):
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
img_arr = img_to_array(img) # Convert to array
img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
result = run_effNet(img_arr)
return result
# preprocess images for efficient net art
def pre_process_img_effNetArt(image):
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
img_arr = img_to_array(img) # Convert to array
img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
result = run_effNet_Art(img_arr)
return result
# preprocess image for cnn
def pre_process_img(image):
# Load and preprocess the image
input_picture = load_img(image, target_size=(256, 256))
img_arr = img_to_array(input_picture) / 255.0 # Normalize the image
img_arr = img_arr.reshape((1, 256, 256, 3)) # Add batch dimension
result = run_cnn(img_arr)
return result
#UI
#title
col1, col2, col3,col4, col5 = st.columns([4,1,3,3,1], gap="small")
# In the first column, display the image
with col1:
st.write('')
with col2:
st.image("styles/robot.png")
# In the second column, display the text
with col3:
st.markdown(
"""
<p class="title"> AI vs REAL Image Detection </p>
""",
unsafe_allow_html=True
)
with col4:
st.write('')
with col5:
st.write('')
# division between photo and other widget component
main_col_one, main_col_two = st.columns([2,2], gap="large")
#photo column
with main_col_one:
# Create a placeholder for the image
image_placeholder = st.empty()
with main_col_two:
with open("styles/detectiveMag.svg", "r") as file:
svg_content_detective_Mag = file.read()
#alignment between magnifying glass image and upload line
col1, col2, col3,col4 = st.columns([4,4,1,3], gap="small")
with col1:
st.write('')
with col2:
st.markdown(
"""<p class = "upload_line"> Please upload the image </p>""",
unsafe_allow_html= True
)
with col3:
st.markdown(
f"<div class='detectiveMag1' style='bottom: 0%; right: 0%;'>{svg_content_detective_Mag}</div>",
unsafe_allow_html=True
)
with col4:
st.write('')
# introduce states
if "prev_image" not in st.session_state:
st.session_state.prev_image = None
if "reset_model" not in st.session_state:
st.session_state.reset_model = False
if "model_key" not in st.session_state:
st.session_state.model_key = "default_model_key"
# Upload image widget
user_image = st.file_uploader("png, jpg, or jpeg image", ['png', 'jpg', 'jpeg'], label_visibility='hidden')
if user_image:
# Convert the image to base64 encoding
image_bytes = user_image.read()
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Display the image centered using HTML
image_placeholder.markdown(
f'<div style="display: flex; justify-content: center;">'
f'<img src="data:image/jpeg;base64,{image_base64}" max-width:"100%" height:"auto"/>'
f'</div>',
unsafe_allow_html=True
)
# model name select box widget reset condition. reset model name when a new image is uploaded
if user_image != st.session_state.prev_image:
if st.session_state.prev_image is not None:
st.session_state.model_key = "reset_model_key" if st.session_state.model_key == "default_model_key" else "default_model_key"
st.session_state.reset_model = True
st.session_state.prev_image = user_image # set prev image to current image
# model name select box widget
model_name = st.selectbox(
'Choose a model',
['CNN', 'Efficientnet', 'Efficientnet Art'],
index=None,
placeholder='choose an option',
key=st.session_state.model_key
)
# placeholder to display result
result_placeholder = st.empty()
if user_image is not None and model_name is not None:
predictions = []
# preprocess image and run the user selected model
if model_name == 'CNN':
print('CNN is running')
predictions = pre_process_img(user_image)
elif model_name == 'Efficientnet':
print('Effnet is running')
predictions = pre_process_img_effNet(user_image)
elif model_name == 'Efficientnet Art':
print('Effnet Art is running')
predictions = pre_process_img_effNetArt(user_image)
if predictions[0] < 0.5:
result_word = "AI Generated"
else:
result_word = "REAL"
# display the result and the prediction
if user_image is not None:
if len(predictions) > 0:
result_placeholder.markdown(f"<div class='result'> <span class = 'prediction'>Prediction: {predictions[0][0]:.2%}</span> <br> It is a <span class = resultword> {result_word} </span> image. </div>", unsafe_allow_html=True)
print(model_name)
print(predictions[0])
|