File size: 7,006 Bytes
c69a273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac4458
b79c29e
 
 
 
 
 
 
 
 
 
c69a273
cb99718
c69a273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43511ce
 
 
 
ae54e64
 
43511ce
 
 
c69a273
43511ce
 
ae54e64
 
43511ce
 
 
 
 
 
 
 
 
c69a273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43511ce
c69a273
 
43511ce
c69a273
 
 
 
 
 
 
 
 
 
43511ce
 
c69a273
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# imports
import streamlit as st
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np





# load css
def load_local_css(file_name):
    with open(file_name) as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

load_local_css("./styles/style.css")


# bootstrap
st.markdown(
    """<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-QWTKZyjpPEjISv5WaRU9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW+ALEwIH" crossorigin="anonymous">""",
    unsafe_allow_html=True
)

@st.cache_resource
def load_models():
    # Load all models at once
    eff_net_model = tf.keras.models.load_model('EfficientNet_Models/efficientnetb3_binary_classifier_8.h5')
    eff_net_art_model = tf.keras.models.load_model('EfficientNet_Models/EfficientNet_fine_tune_art_model.h5')
    cnn_model = 'CNN_model_weight/model_weights.weights.h5'
    return eff_net_model, eff_net_art_model, cnn_model

# Access cached models
eff_net_model, eff_net_art_model, cnn_model = load_models()

# CNN model

def run_cnn(img_arr):
    my_model = Sequential()
    my_model.add(Conv2D(
            filters=16, 
            kernel_size=(3, 3), 
            strides=(1, 1),
            activation='relu',
            input_shape=(256, 256, 3) 
    ))
    my_model.add(BatchNormalization())
    my_model.add(MaxPooling2D())
    
    my_model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu')) 
    my_model.add(BatchNormalization())
    my_model.add(MaxPooling2D()) 

    my_model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) 
    my_model.add(BatchNormalization())
    my_model.add(MaxPooling2D())
    
    my_model.add(Flatten())
    my_model.add(Dense(512, activation='relu')) 
    my_model.add(Dropout(0.09)) 
    my_model.add(Dense(1, activation='sigmoid'))
    my_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])


    # Load the pre-trained weights
    my_model.load_weights(cnn_model)

    prediction = my_model.predict(img_arr)
    return prediction

def run_effNet(img_arr):
    try:
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)
    except ValueError:
        strategy = tf.distribute.get_strategy()  
    with strategy.scope():
            prediction = eff_net_model.predict(img_arr)
    return prediction
 
def run_effNet_Art(img_arr):
    try:
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)
    except ValueError:
        strategy = tf.distribute.get_strategy()  
    with strategy.scope():
            prediction = eff_net_art_model.predict(img_arr)
    return prediction

def pre_process_img_effNet(image):
    img = load_img(image, target_size=(300, 300))  # Resize image to model input size
    img_arr = img_to_array(img)  # Convert to array
    img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
    result = run_effNet(img_arr)
    return result

def pre_process_img_effNetArt(image):
    img = load_img(image, target_size=(224, 224))  # Resize image to model input size
    img_arr = img_to_array(img)  # Convert to array
    img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
    result = run_effNet_Art(img_arr)
    return result

# preprocess image for cnn
def pre_process_img(image):
        # Load and preprocess the image
        input_picture = load_img(image, target_size=(256, 256))
        img_arr = img_to_array(input_picture) / 255.0  # Normalize the image
        img_arr = img_arr.reshape((1, 256, 256, 3))  # Add batch dimension
        result = run_cnn(img_arr)
        return result
# title
st.markdown(
    """<p class = "title"> AI vs REAL Image Detection </p>""",
    unsafe_allow_html= True
)

# upload image
st.markdown(
     """<p class = "upload_line"> Please upload the image </p>""",
    unsafe_allow_html= True
)

# introduce states
if "prev_image" not in st.session_state:
    st.session_state.prev_image = None 
if "reset_model" not in st.session_state:
    st.session_state.reset_model = False
if "model_key" not in st.session_state:
    st.session_state.model_key = "default_model_key"

user_image = st.file_uploader("png, jpg, or jpeg image", ['png', 'jpg', 'jpeg'], label_visibility='hidden')
if user_image != st.session_state.prev_image:
    if st.session_state.prev_image is not None: 
        st.session_state.model_key = "reset_model_key" if st.session_state.model_key == "default_model_key" else "default_model_key"
        st.session_state.reset_model = True
    st.session_state.prev_image = user_image  # set prev image to current image 

model_name = st.selectbox(
    'Choose a model',
    ['CNN', 'Efficientnet', 'Efficientnet Art'],
    index=None,
    placeholder='choose an option',
    key=st.session_state.model_key
)
result_placeholder = st.empty()

# design animation elements
with open("styles/detectiveMag.svg", "r") as file:
    svg_content_detective_Mag = file.read()

# First magnifying glass starts at bottom-right
st.markdown(
    f"<div class='detectiveMag1' style='bottom: 0%; right: 0%;'>{svg_content_detective_Mag}</div>",
    unsafe_allow_html=True
)

# Second magnifying glass starts slightly higher up the diagonal
st.markdown(
    f"<div class='detectiveMag2' style='bottom: 10%; right: 10%;'>{svg_content_detective_Mag}</div>",
    unsafe_allow_html=True
)

# Third magnifying glass starts further up the diagonal
st.markdown(
    f"<div class='detectiveMag3' style='bottom: 20%; right: 20%;'>{svg_content_detective_Mag}</div>",
    unsafe_allow_html=True
)

if user_image is not None and model_name is not None:
    predictions = []
    if model_name == 'CNN':
        print('CNN is running')
        predictions = pre_process_img(user_image)
    elif model_name == 'Efficientnet':
        print('Effnet is running')
        predictions = pre_process_img_effNet(user_image)
    elif model_name == 'Efficientnet Art':
        print('Effnet Art is running')
        predictions = pre_process_img_effNetArt(user_image)

    if predictions[0] < 0.5:
         result_word = "FAKE"
    else:
         result_word = "REAL"

    if user_image is not None:
        if len(predictions) > 0: 
            result_placeholder.markdown(f"<div class='result'> <span class = 'prediction'>Prediction: {predictions[0][0]}</span> <br> It is a <span class = resultword> {result_word} </span> image. </div>", unsafe_allow_html=True)
            

    print(model_name)
    print(predictions[0])