Medi-Scape / app_docr.py
DjPapzin's picture
Add falcondemo.mp4 and .keras model to Git LFS
c77acf1
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
from PIL import Image
import cv2
import numpy as np
import supervision as sv
import matplotlib.pyplot as plt
def preprocess_image(image_path):
# Load the image
#image = Image.open(image_path)
#image = cv2.imread(image_path)
image = np.array(image_path)
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plt.subplot(3, 4, 1)
plt.title("Grayscale")
plt.imshow(gray, cmap='gray')
# Remove noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
plt.subplot(3, 4, 2)
plt.title("Blurred")
plt.imshow(blurred, cmap='gray')
# Thresholding/Binarization
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
plt.subplot(3, 4, 3)
plt.title("Binary")
plt.imshow(binary, cmap='gray')
# Dilation and Erosion
kernel = np.ones((1, 1), np.uint8)
dilated = cv2.dilate(binary, kernel, iterations=1)
eroded = cv2.erode(dilated, kernel, iterations=1)
plt.subplot(3, 4, 4)
plt.title("Eroded")
plt.imshow(eroded, cmap='gray')
# Display the original image and the edge-detected image
edges = cv2.Canny(eroded, 100, 200)
plt.subplot(3,4,5)
plt.title('Edge Image')
plt.imshow(edges, cmap='gray')
# Deskewing
coords = np.column_stack(np.where(edges > 0))
angle = cv2.minAreaRect(coords)[-1]
print(f"Detected angle: {angle}")
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
angle = 0
print(f"Corrected angle: {angle}")
(h, w) = edges.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
deskewed = cv2.warpAffine(edges, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
plt.subplot(3, 4, 6)
plt.title("Deskewed")
plt.imshow(deskewed, cmap='gray')
# Convert to grayscale
#gray = cv2.cvtColor(deskewed, cv2.COLOR_BGR2GRAY)
# Find contours
contours, hierarchy = cv2.findContours(deskewed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours on the original image
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
plt.subplot(3, 4, 7)
plt.title('Contours')
plt.imshow(cv2.cvtColor(contour_image, cv2.COLOR_BGR2RGB))
plt.show()
return contour_image
##########################################################################################################################
import os
from PIL import Image
from inference_sdk import InferenceHTTPClient
from roboflow import Roboflow
from PIL import Image
import supervision as sv
import cv2
CLIENT = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key="LSbJ0tl3WTLn4Aqar0Sp"
)
def creating_display_image(preprocessed_image):
# Perform inference
result_doch1 = CLIENT.infer(preprocessed_image, model_id="doctor-s-handwriting/1")
# Print or process the result
#print(result_doch1)
labels = [item["class"] for item in result_doch1["predictions"]]
detections = sv.Detections.from_inference(result_doch1)
image_np = np.array(preprocessed_image)
label_annotator = sv.LabelAnnotator()
bounding_box_annotator = sv.BoxAnnotator()
annotated_image = bounding_box_annotator.annotate(
scene=image_np, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections, labels=labels)
annotated_image_pil = Image.fromarray(annotated_image)
sv.plot_image(image=annotated_image_pil, size=(16, 16))
return annotated_image_pil
######################################################################################################################
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import supervision as sv
def process_and_plot_image(preprocessed_image):
# Convert preprocessed image to numpy array
image_np = np.array(preprocessed_image)
# Perform inference
result_doch1 = CLIENT.infer(preprocessed_image, model_id="doctor-s-handwriting/1")
# Extract labels and detections
labels = [item["class"] for item in result_doch1["predictions"]]
detections = sv.Detections.from_inference(result_doch1)
# Debug: Print unsorted detections and labels
print("Unsorted Detections and Labels:")
for i, detection in enumerate(detections):
print(f"Detection {i}: {detection} - Label: {labels[i]}")
# Function to extract the x1 coordinate from the detection
def get_x1(detection):
return detection.xyxy[0][0] # Access the first element of the bounding box array
# Sort detections and labels by the x-coordinate of the bounding box
sorted_indices = sorted(range(len(detections)), key=lambda i: get_x1(detections[i]))
sorted_detections = [detections[i] for i in sorted_indices]
sorted_labels = [labels[i] for i in sorted_indices]
# Debug: Print sorted detections and labels
print("Sorted Detections and Labels:")
for i, detection in enumerate(sorted_detections):
print(f"Detection {i}: {detection} - Label: {sorted_labels[i]}")
# Function to plot bounding boxes
def plot_bounding_boxes(image_np, detections):
image_with_boxes = image_np.copy()
for detection in detections:
x1, y1, x2, y2 = detection.xyxy[0] # Extract bounding box coordinates
cv2.rectangle(image_with_boxes, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)
return image_with_boxes
# Function to plot labels
def plot_labels(image_np, detections, labels):
image_with_labels = image_np.copy()
for i, detection in enumerate(detections):
x1, y1, x2, y2 = detection.xyxy[0] # Extract bounding box coordinates
label = labels[i]
cv2.putText(image_with_labels, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return image_with_labels
# Plot bounding boxes with sorted detections
image_with_boxes = plot_bounding_boxes(image_np, sorted_detections)
# Plot labels with sorted detections and labels
image_with_labels = plot_labels(image_np, sorted_detections, sorted_labels)
# Convert images to RGB for plotting with matplotlib
image_with_boxes_rgb = cv2.cvtColor(image_with_boxes, cv2.COLOR_BGR2RGB)
image_with_labels_rgb = cv2.cvtColor(image_with_labels, cv2.COLOR_BGR2RGB)
# Plot results using matplotlib
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Bounding Boxes")
plt.imshow(image_with_boxes_rgb)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title("Labels")
plt.imshow(image_with_labels_rgb)
plt.axis('off')
plt.show()
return sorted_labels
##########################################################################################################################
def image_result(sorted_labels):
# Convert list to string
resulting_string = ''.join(sorted_labels)
return resulting_string
############################################################################################################################
import streamlit as st
from PIL import Image
# Title of the app
st.title("DOCTOR HANDWRITING DETECTION")
# Upload an image file
uploaded_image = st.file_uploader("Choose an image...", type="jpg")
if uploaded_image is not None:
# Display the image
image = Image.open(uploaded_image)
preprocessed_image_for_streamlit = preprocess_image(image)
display_boundingbox = creating_display_image(preprocessed_image_for_streamlit)
result = process_and_plot_image(preprocessed_image_for_streamlit)
input_image_result = image_result(result)
cv2.imwrite('preprocessed_image_2.jpg', preprocessed_image_for_streamlit)
st.image(image, caption='Input image by user', use_column_width=True)
st.image(display_boundingbox, caption='Displayed image through bounding boxes', use_column_width=True)
# Display some text
st.write("Detected text on the image uploaded by the user")
st.write(input_image_result)
else:
st.write("Please upload an image file.")