Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers.utils import load_image | |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
from diffusers.models.controlnet_flux import FluxControlNetModel | |
base_model = 'black-forest-labs/FLUX.1-dev' | |
controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai' | |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
def generate_image(prompt, control_image, controlnet_conditioning_scale, num_inference_steps, guidance_scale): | |
control_image = load_image(control_image) if isinstance(control_image, str) else control_image | |
result = pipe( | |
prompt, | |
control_image=control_image, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
return result | |
with gr.Blocks() as demo: | |
gr.Markdown("# FLUX ControlNet Pipeline Interface") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...") | |
control_image = gr.Image(source="upload", type="filepath", label="Control Image") | |
controlnet_conditioning_scale = gr.Slider(0.0, 1.0, value=0.6, label="ControlNet Conditioning Scale") | |
num_inference_steps = gr.Slider(1, 100, value=28, step=1, label="Number of Inference Steps") | |
guidance_scale = gr.Slider(1.0, 10.0, value=3.5, label="Guidance Scale") | |
generate_button = gr.Button("Generate Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
generate_button.click( | |
generate_image, | |
inputs=[prompt, control_image, controlnet_conditioning_scale, num_inference_steps, guidance_scale], | |
outputs=output_image | |
) | |
demo.launch() |