erwold
Initial Commit
49d4954
raw
history blame
9.59 kB
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
MODEL_ID = "Djrango/Qwen2vl-Flux"
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
# Load FLUX components
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
# Load VAE and transformer from flux folder
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux")
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
# Load Qwen2VL components from qwen2-vl folder
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
# Load connector and t5 embedder from qwen2-vl folder
connector = Qwen2Connector()
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=self.device)
connector.load_state_dict(connector_state)
# Load T5 embedder
self.t5_context_embedder = nn.Linear(4096, 3072)
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=self.device)
self.t5_context_embedder.load_state_dict(t5_embedder_state)
# Move models to device and set dtype
models = [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]
for model in models:
model.to(self.device).to(self.dtype)
model.eval()
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
# Initialize processor and pipeline
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def resize_image(self, img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
return image_hidden_state, image_grid_thw
def compute_t5_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
prompt_embeds = self.t5_context_embedder(prompt_embeds)
return prompt_embeds
def compute_text_embeddings(self, prompt=""):
with torch.no_grad():
text_inputs = self.models['tokenizer'](
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder'](
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output.to(self.dtype)
return pooled_prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None):
try:
if seed is not None:
torch.manual_seed(seed)
self.load_models()
# Process input image
input_image = self.resize_image(input_image)
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
pooled_prompt_embeds = self.compute_text_embeddings("")
# Get T5 embeddings if prompt is provided
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
# Generate images
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images
return output_images
except Exception as e:
print(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
# Create Gradio interface
with gr.Blocks(title="Qwen2vl-Flux Demo") as demo:
gr.Markdown("""
# 🎨 Qwen2vl-Flux Image Variation Demo
Upload an image and get AI-generated variations. You can optionally add a text prompt to guide the generation.
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil")
prompt = gr.Textbox(label="Optional Text Prompt(should be as long as possible)", placeholder="Enter text prompt here (optional)")
with gr.Row():
guidance = gr.Slider(minimum=1, maximum=10, value=3.5, label="Guidance Scale")
steps = gr.Slider(minimum=1, maximum=50, value=28, label="Number of Steps")
num_images = gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Number of Images")
seed = gr.Number(label="Random Seed (optional)", precision=0)
submit_btn = gr.Button("Generate Variations", variant="primary")
with gr.Column():
output_gallery = gr.Gallery(label="Generated Variations", columns=2, show_label=True)
# Set up the generation function
submit_btn.click(
fn=interface.generate,
inputs=[input_image, prompt, guidance, steps, num_images, seed],
outputs=output_gallery,
)
gr.Markdown("""
### Notes:
- Higher guidance scale values result in outputs that more closely follow the prompt
- More steps generally produce better quality but take longer
- Set a seed for reproducible results
""")
# Launch the app
if __name__ == "__main__":
demo.launch()