Spaces:
Sleeping
Sleeping
################################################################################ | |
# | |
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: BSD-3-Clause | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# 3. Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
################################################################################ | |
""" | |
Basic example of using the CUTLASS Python interface to run a 2d convolution | |
""" | |
import sys | |
print("This example is deprecated. Please see examples/python for examples of using " | |
"the CUTLASS Python interface.") | |
sys.exit(0) | |
import argparse | |
import numpy as np | |
import torch | |
import cutlass_bindings | |
import cutlass.backend as pycutlass | |
from cutlass.backend import * | |
from cutlass.backend.utils.reference_model import Conv2dReferenceModule | |
from cutlass.backend.utils.device import device_cc | |
parser = argparse.ArgumentParser( | |
description=("Launch a 2d convolution kernel from Python. " | |
"See https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#convo-intro for notation.")) | |
parser.add_argument("--n", default=1, type=int, help="N dimension of the convolution") | |
parser.add_argument("--c", default=64, type=int, help="C dimension of the convolution") | |
parser.add_argument("--h", default=32, type=int, help="H dimension of the convolution") | |
parser.add_argument("--w", default=32, type=int, help="W dimension of the convolution") | |
parser.add_argument("--k", default=32, type=int, help="N dimension of the convolution") | |
parser.add_argument("--r", default=3, type=int, help="R dimension of the convolution") | |
parser.add_argument("--s", default=3, type=int, help="S dimension of the convolution") | |
parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") | |
try: | |
args = parser.parse_args() | |
except: | |
sys.exit(0) | |
# Check that the device is of a sufficient compute capability | |
cc = device_cc() | |
assert cc >= 70, "The CUTLASS Python Conv2d example requires compute capability greater than or equal to 70." | |
alignment = 1 | |
np.random.seed(0) | |
# Allocate a pool of device memory to be used by the kernel | |
pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) | |
# Set the compiler to use to NVCC | |
pycutlass.compiler.nvcc() | |
# Set up A, B, C and accumulator | |
A = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment) | |
B = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment) | |
C = TensorDescription(cutlass_bindings.float32, cutlass_bindings.TensorNHWC, alignment) | |
element_acc = cutlass_bindings.float32 | |
element_epilogue = cutlass_bindings.float32 | |
# Select instruction shape based on the Tensor Core instructions supported | |
# by the device on which we are running | |
if cc == 70: | |
instruction_shape = [8, 8, 4] | |
elif cc == 75: | |
instruction_shape = [16, 8, 8] | |
else: | |
# Use CUTLASS kernels for CC 80 by default (e.g., for cases in which SM86 is used) | |
cc = 80 | |
instruction_shape = [16, 8, 16] | |
math_inst = MathInstruction( | |
instruction_shape, | |
A.element, B.element, element_acc, | |
cutlass_bindings.OpClass.TensorOp, | |
MathOperation.multiply_add | |
) | |
tile_description = TileDescription( | |
[128, 128, 32], # Threadblock shape | |
2, # Number of stages | |
[2, 2, 1], # Number of warps within each dimension of the threadblock shape | |
math_inst | |
) | |
epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) | |
operation = Conv2dOperation( | |
conv_kind=cutlass_bindings.conv.Operator.fprop, | |
iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, | |
arch=cc, tile_description=tile_description, | |
A=A, B=B, C=C, stride_support=StrideSupport.Strided, | |
epilogue_functor=epilogue_functor | |
) | |
if args.print_cuda: | |
print(operation.rt_module.emit()) | |
operations = [operation, ] | |
# Compile the operation | |
pycutlass.compiler.add_module(operations) | |
# Randomly initialize tensors | |
problem_size = cutlass_bindings.conv.Conv2dProblemSize( | |
cutlass_bindings.Tensor4DCoord(args.n, args.h, args.c, args.w), | |
cutlass_bindings.Tensor4DCoord(args.k, args.r, args.s, args.c), | |
cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), # Padding | |
cutlass_bindings.MatrixCoord(1, 1), # Strides | |
cutlass_bindings.MatrixCoord(1, 1), # Dilation | |
cutlass_bindings.conv.Mode.cross_correlation, | |
1, # Split k slices | |
1 # Groups | |
) | |
tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size(operation.conv_kind, problem_size) | |
tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size(operation.conv_kind, problem_size) | |
tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size(operation.conv_kind, problem_size) | |
tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) | |
tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) | |
tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5)) | |
tensor_D = torch.ones(size=(tensor_C_size,), dtype=torch.float32, device="cuda") | |
alpha = 1. | |
beta = 0. | |
arguments = Conv2dArguments( | |
operation=operation, problem_size=problem_size, | |
A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, | |
output_op=operation.epilogue_type(alpha, beta) | |
) | |
# Run the operation | |
operation.run(arguments) | |
arguments.sync() | |
# Run the host reference module and compare to the CUTLASS result | |
reference = Conv2dReferenceModule(A, B, C, operation.conv_kind) | |
tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) | |
try: | |
assert torch.equal(tensor_D, tensor_D_ref) | |
except: | |
assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) | |
print("Passed.") | |