Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/container/tuple.hpp>
#include <cute/algorithm/tuple_algorithms.hpp>
#include <cute/numeric/integer_sequence.hpp>
#include <cute/numeric/integral_constant.hpp>
#include <cute/numeric/math.hpp>
namespace cute
{
// A generic Swizzle functor
/* 0bxxxxxxxxxxxxxxxYYYxxxxxxxZZZxxxx
* ^--^ MBase is the number of least-sig bits to keep constant
* ^-^ ^-^ BBits is the number of bits in the mask
* ^---------^ SShift is the distance to shift the YYY mask
* (pos shifts YYY to the right, neg shifts YYY to the left)
*
* e.g. Given
* 0bxxxxxxxxxxxxxxxxYYxxxxxxxxxZZxxx
* the result is
* 0bxxxxxxxxxxxxxxxxYYxxxxxxxxxAAxxx where AA = ZZ xor YY
*/
template <int BBits, int MBase, int SShift = BBits>
struct Swizzle
{
static constexpr int num_bits = BBits;
static constexpr int num_base = MBase;
static constexpr int num_shft = SShift;
static_assert(num_base >= 0, "MBase must be positive.");
static_assert(num_bits >= 0, "BBits must be positive.");
static_assert(abs(num_shft) >= num_bits, "abs(SShift) must be more than BBits.");
// using 'int' type here to avoid unintentially casting to unsigned... unsure.
using bit_msk = cute::constant<int, (1 << num_bits) - 1>;
using yyy_msk = cute::constant<int, bit_msk{} << (num_base + max(0,num_shft))>;
using zzz_msk = cute::constant<int, bit_msk{} << (num_base - min(0,num_shft))>;
using msk_sft = cute::constant<int, num_shft>;
static constexpr uint32_t swizzle_code = uint32_t(yyy_msk{} | zzz_msk{});
template <class Offset>
CUTE_HOST_DEVICE constexpr static
auto
apply(Offset const& offset)
{
return offset ^ shiftr(offset & yyy_msk{}, msk_sft{}); // ZZZ ^= YYY
}
template <class Offset>
CUTE_HOST_DEVICE constexpr
auto
operator()(Offset const& offset) const
{
return apply(offset);
}
template <int B, int M, int S>
CUTE_HOST_DEVICE constexpr
auto
operator==(Swizzle<B,M,S> const&) const
{
return B == BBits && M == MBase && S == SShift;
}
};
//
// make_swizzle<0b1000, 0b0100>() -> Swizzle<1,2,1>
// make_swizzle<0b11000000, 0b00000110>() -> Swizzle<2,1,5>
//
template <uint32_t Y, uint32_t Z>
CUTE_HOST_DEVICE constexpr
auto
make_swizzle()
{
constexpr uint32_t BZ = popcount(Y); // Number of swizzle bits
constexpr uint32_t BY = popcount(Z); // Number of swizzle bits
static_assert(BZ == BY, "Number of bits in Y and Z don't match");
constexpr uint32_t TZ_Y = countr_zero(Y); // Number of trailing zeros in Y
constexpr uint32_t TZ_Z = countr_zero(Z); // Number of trailing zeros in Z
constexpr uint32_t M = cute::min(TZ_Y, TZ_Z) % 32;
constexpr int32_t S = int32_t(TZ_Y) - int32_t(TZ_Z); // Difference in trailing zeros
static_assert((Y | Z) == Swizzle<BZ,M,S>::swizzle_code, "Something went wrong.");
return Swizzle<BZ,M,S>{};
}
template <int B0, int M0, int S0,
int B1, int M1, int S1>
CUTE_HOST_DEVICE constexpr
auto
composition(Swizzle<B0,M0,S0>, Swizzle<B1,M1,S1>)
{
static_assert(S0 == S1, "Can only merge swizzles of the same shift.");
constexpr uint32_t Y = Swizzle<B0,M0,S0>::yyy_msk::value ^ Swizzle<B1,M1,S1>::yyy_msk::value;
constexpr uint32_t Z = Swizzle<B0,M0,S0>::zzz_msk::value ^ Swizzle<B1,M1,S1>::zzz_msk::value;
return make_swizzle<Y,Z>();
//return ComposedFn<Swizzle<B0,M0,S0>, Swizzle<B1,M1,S1>>{};
}
//
// Utility for slicing and swizzle "offsets"
//
// For swizzle functions, it is often needed to keep track of which bits are
// consumed and which bits are free. Furthermore, it is useful to know whether
// each of these bits is known statically or dynamically.
// MixedBits is an 32-bit unsigned integer class where some bits are known statically
// and some bits are known dynamically. These sets of bits are disjoint and it is
// known statically which bits are known dynamically.
// MixedBits can only be manipulated through bitwise operations
// Abstract value: StaticInt | (dynamic_int_ & StaticFlags)
template <uint32_t StaticInt,
uint32_t StaticFlags> // 0: static, 1: dynamic
struct MixedBits
{
// Representation invariants
static_assert(StaticFlags != 0, "Should be at least one dynamic bit in MixedBits.");
static_assert((StaticInt & StaticFlags) == 0, "No static/dynamic overlap allowed in MixedBits.");
uint32_t dynamic_int_;
// assert((dynamic_int_ & ~StaticFlags) == 0);
CUTE_HOST_DEVICE constexpr operator uint32_t() const noexcept { return StaticInt | dynamic_int_; }
};
// Return a value representing (C<s>{} | (d & C<f>)) potentially using MixedBits to track s and f.
// This maker does allow ((s & f) != 0) and enforces the MixedBits invariant before creation.
template <auto s, class DynamicType, auto f>
CUTE_HOST_DEVICE constexpr
auto
make_mixed_bits(C<s>, DynamicType const& d, C<f>)
{
static_assert(is_integral<DynamicType>::value);
constexpr uint32_t new_f = uint32_t(f) & ~uint32_t(s); // StaticBits take precedence, M<0,f>{d} | C<s>{}
if constexpr (new_f == 0 || is_static<DynamicType>::value) {
return C<s>{} | (d & C<new_f>{}); // Just return a static int
} else {
return MixedBits<s, new_f>{uint32_t(d) & new_f}; // MixedBits
}
CUTE_GCC_UNREACHABLE;
}
//
// Operators
//
// Equality
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator==(MixedBits<S0,F0> const& m, C<S1>)
{
return (S0 == (uint32_t(S1) & ~F0)) && (m.dynamic_int_ == (uint32_t(S1) & F0));
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator==(C<S1> s, MixedBits<S0,F0> const& m)
{
return m == s;
}
// Bitwise AND
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator&(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) & (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 0X0 | 0X0 | 0X0 |
// 001 | 0X0 | 001 | 001 | 001 |
// 011 | 0X0 | 001 | 011 | 011 |
// 1X0 | 0X0 | 001 | 011 | 1X0 |
return make_mixed_bits(C<S0 & S1>{},
//(S0 | m0.dynamic_int_) & (S1 | m1.dynamic_int_),
((S1 & F0) & m0.dynamic_int_) | ((S0 & F1) & m1.dynamic_int_) | (m0.dynamic_int_ & m1.dynamic_int_),
C<(S1 & F0) | (S0 & F1) | (F0 & F1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator&(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<S0 & uint32_t(S1)>{},
m.dynamic_int_,
C<F0 & uint32_t(S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator&(C<S1> s, MixedBits<S0,F0> const& m)
{
return m & s;
}
// Bitwise OR
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator|(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) | (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 001 | 011 | 1X0 |
// 001 | 001 | 001 | 011 | 1X0 |
// 011 | 011 | 011 | 011 | 1X0 |
// 1X0 | 1X0 | 1X0 | 1X0 | 1X0 |
return make_mixed_bits(C<S0 | S1>{},
((~S1 & F0) & m0.dynamic_int_) | ((~S0 & F1) & m1.dynamic_int_),
C<(~S0 & F1) | (~S1 & F0)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator|(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<S0 | uint32_t(S1)>{},
m.dynamic_int_,
C<F0 & ~uint32_t(S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator|(C<S1> s, MixedBits<S0,F0> const& m)
{
return m | s;
}
// Bitwise XOR
template <uint32_t S0, uint32_t F0,
uint32_t S1, uint32_t F1>
CUTE_HOST_DEVICE constexpr
auto
operator^(MixedBits<S0,F0> const& m0, MixedBits<S1,F1> const& m1)
{
// Truth table for (S0,D0,F0) ^ (S1,D1,F1) -> (S,D,F)
// S0D0F0 | 0X0 | 001 | 011 | 1X0 |
// S1D1F1
// 0X0 | 0X0 | 001 | 011 | 1X0 |
// 001 | 001 | 001 | 011 | 011 |
// 011 | 011 | 011 | 001 | 001 |
// 1X0 | 1X0 | 011 | 001 | 0X0 |
return make_mixed_bits(C<(~S0 & S1 & ~F0) | (S0 & ~S1 & ~F1)>{},
(S0 | m0.dynamic_int_) ^ (S1 | m1.dynamic_int_),
C<F0 | F1>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator^(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(~S0 & uint32_t(S1) & ~F0) | (S0 & ~uint32_t(S1))>{},
(S0 | m.dynamic_int_) ^ uint32_t(S1),
C<F0>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator^(C<S1> s, MixedBits<S0,F0> const& m)
{
return m ^ s;
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator<<(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(S0 << S1)>{},
m.dynamic_int_ << S1,
C<(F0 << S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
operator>>(MixedBits<S0,F0> const& m, C<S1>)
{
return make_mixed_bits(C<(S0 >> S1)>{},
m.dynamic_int_ >> S1,
C<(F0 >> S1)>{});
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
shiftl(MixedBits<S0,F0> const& m, C<S1> s)
{
if constexpr (S1 >= 0) {
return m << s;
} else {
return m >> -s;
}
}
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
shiftr(MixedBits<S0,F0> const& m, C<S1> s)
{
if constexpr (S1 >= 0) {
return m >> s;
} else {
return m << -s;
}
}
//
// upcast and downcast
//
template <uint32_t S0, uint32_t F0, auto S1>
CUTE_HOST_DEVICE constexpr
auto
safe_div(MixedBits<S0,F0> const& m, C<S1> s)
{
static_assert(has_single_bit(uint32_t(S1)), "Only divide MixedBits by powers of two.");
return make_mixed_bits(safe_div(C<S0>{}, s),
safe_div(m.dynamic_int_, s),
safe_div(C<F0>{}, s));
}
template <uint32_t N, uint32_t S0, uint32_t F0>
CUTE_HOST_DEVICE constexpr
auto
upcast(MixedBits<S0,F0> const& m)
{
static_assert(has_single_bit(N), "Only divide MixedBits by powers of two.");
return safe_div(m, C<N>{});
}
template <uint32_t N, class T, __CUTE_REQUIRES(cute::is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
upcast(T const& m)
{
return safe_div(m, C<N>{});
}
template <uint32_t N, uint32_t S0, uint32_t F0>
CUTE_HOST_DEVICE constexpr
auto
downcast(MixedBits<S0,F0> const& m)
{
static_assert(has_single_bit(N), "Only scale MixedBits by powers of two.");
return make_mixed_bits(C<S0 * N>{},
m.dynamic_int_ * N,
C<F0 * N>{});
}
template <uint32_t N, class T, __CUTE_REQUIRES(cute::is_integral<T>::value)>
CUTE_HOST_DEVICE constexpr
auto
downcast(T const& m)
{
return m * C<N>{};
}
//
// Convert a Pow2Layout+Coord to a MixedBits
//
template <class Shape, class Stride, class Coord>
CUTE_HOST_DEVICE constexpr
auto
to_mixed_bits(Shape const& shape, Stride const& stride, Coord const& coord)
{
if constexpr (is_tuple<Shape>::value && is_tuple<Stride>::value && is_tuple<Coord>::value) {
static_assert(tuple_size<Shape>::value == tuple_size<Stride>::value, "Mismatched ranks");
static_assert(tuple_size<Shape>::value == tuple_size<Coord >::value, "Mismatched ranks");
return transform_apply(shape, stride, coord, [](auto const& s, auto const& d, auto const& c) { return to_mixed_bits(s,d,c); },
[](auto const&... a) { return (a ^ ...); });
} else if constexpr (is_integral<Shape>::value && is_integral<Stride>::value && is_integral<Coord>::value) {
static_assert(decltype(shape*stride)::value == 0 || has_single_bit(decltype(shape*stride)::value), "Requires pow2 shape*stride.");
return make_mixed_bits(Int<0>{}, coord * stride, (shape - Int<1>{}) * stride);
} else {
static_assert(is_integral<Shape>::value && is_integral<Stride>::value && is_integral<Coord>::value, "Either Shape, Stride, and Coord must be all tuples, or they must be all integral (in the sense of cute::is_integral).");
}
CUTE_GCC_UNREACHABLE;
}
template <class Layout, class Coord>
CUTE_HOST_DEVICE constexpr
auto
to_mixed_bits(Layout const& layout, Coord const& coord)
{
return to_mixed_bits(layout.shape(), layout.stride(), idx2crd(coord, layout.shape()));
}
//
// Display utilities
//
template <int B, int M, int S>
CUTE_HOST_DEVICE void print(Swizzle<B,M,S> const&)
{
printf("Sw<%d,%d,%d>", B, M, S);
}
template <uint32_t S, uint32_t F>
CUTE_HOST_DEVICE void print(MixedBits<S,F> const& m)
{
printf("M_%u|(%u&%u)=%u", S, m.dynamic_int_, F, uint32_t(m));
}
#if !defined(__CUDACC_RTC__)
template <int B, int M, int S>
CUTE_HOST std::ostream& operator<<(std::ostream& os, Swizzle<B,M,S> const&)
{
return os << "Sw<" << B << "," << M << "," << S << ">";
}
template <uint32_t S, class D, uint32_t F>
CUTE_HOST std::ostream& operator<<(std::ostream& os, MixedBits<S,F> const& m)
{
return os << "M_" << S << "|(" << m.dynamic_int_ << "&" << F << ")=" << uint32_t(m);
}
#endif // !defined(__CUDACC_RTC__)
} // end namespace cute