Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Helper functions for mapping CUTLASS concepts to cuDNN.
*/
#if CUTLASS_ENABLE_CUDNN
#include <stdexcept>
#include "cutlass/profiler/cudnn_helpers.h"
namespace cutlass {
namespace profiler {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts a cuDNN status to cutlass::Status
Status get_cutlass_status(cudnnStatus_t cudnn_status) {
if (cudnn_status == CUDNN_STATUS_SUCCESS) {
return Status::kSuccess;
}
else if (cudnn_status == CUDNN_STATUS_INVALID_VALUE) {
return Status::kErrorInvalidProblem;
}
if (cudnn_status == CUDNN_STATUS_NOT_SUPPORTED) {
return Status::kErrorNotSupported;
}
return Status::kErrorInternal;
}
/// Converts a cuDNN status to cutlass::profiler::Disposition
Disposition get_cutlass_disposition(cudnnStatus_t cudnn_status) {
if (cudnn_status == CUDNN_STATUS_INVALID_VALUE) {
return Disposition::kInvalidProblem;
}
else if (cudnn_status == CUDNN_STATUS_NOT_SUPPORTED) {
return Disposition::kNotSupported;
}
return Disposition::kFailed;
}
/// Checks cudnnStatus_t converts to cutlas status and returns if Status::kSuccess o.w. throws exception
Status checkCudnnErr(cudnnStatus_t cudnn_status) {
Status cutlass_status = get_cutlass_status(cudnn_status);
if(cutlass_status != Status::kSuccess) {
throw std::runtime_error("checkCudnnErr failed");
}
return cutlass_status;
}
/// Maps a CUTLASS conv mode to a cuDNN cudnnConvolutionMode_t
bool get_cudnn_conv_mode(cudnnConvolutionMode_t &cudnn_conv_mode, conv::Mode conv_mode) {
switch (conv_mode) {
case conv::Mode::kCrossCorrelation:
cudnn_conv_mode = CUDNN_CROSS_CORRELATION;
return true;
case conv::Mode::kConvolution:
cudnn_conv_mode = CUDNN_CONVOLUTION;
return true;
default: break;
}
return false;
}
/// Maps a CUTLASS tensor layout to a cuDNN cudnnTensorFormat_t
bool get_cudnn_layout(cudnnTensorFormat_t &cudnn_layout, library::LayoutTypeID layout) {
switch (layout) {
// cudnn uses the same enum for TensorNC*HW along nDim (ConvDescription::conv_dim)
case library::LayoutTypeID::kTensorNCHW:
case library::LayoutTypeID::kTensorNCDHW:
cudnn_layout = CUDNN_TENSOR_NCHW;
return true;
case library::LayoutTypeID::kTensorNHWC:
case library::LayoutTypeID::kTensorNDHWC:
cudnn_layout = CUDNN_TENSOR_NHWC;
return true;
default: break;
}
return false;
}
/// Maps a CUTLASS numeric type to a cuDNN cudnnDataType_t
bool get_cudnn_datatype(cudnnDataType_t &cudnn_element_type, library::NumericTypeID element_type) {
switch (element_type) {
case library::NumericTypeID::kF16:
cudnn_element_type = CUDNN_DATA_HALF;
return true;
case library::NumericTypeID::kF32:
cudnn_element_type = CUDNN_DATA_FLOAT;
return true;
case library::NumericTypeID::kF64:
cudnn_element_type = CUDNN_DATA_DOUBLE;
return true;
case library::NumericTypeID::kS2:
break;
case library::NumericTypeID::kS4:
break;
case library::NumericTypeID::kS8:
cudnn_element_type = CUDNN_DATA_INT8;
return true;
case library::NumericTypeID::kS16:
break;
case library::NumericTypeID::kS32:
cudnn_element_type = CUDNN_DATA_INT32;
return true;
case library::NumericTypeID::kS64:
break;
case library::NumericTypeID::kU2:
break;
case library::NumericTypeID::kU4:
break;
case library::NumericTypeID::kU8:
cudnn_element_type = CUDNN_DATA_UINT8;
return true;
case library::NumericTypeID::kU16:
break;
case library::NumericTypeID::kU32:
break;
case library::NumericTypeID::kU64:
break;
case library::NumericTypeID::kB1:
break;
case library::NumericTypeID::kInvalid:
default:
break;
}
return false;
}
/// Maps CUTLASS math OpcodeClassID and MathOperationID to cuDNN math_type
bool get_cudnn_mathtype(cudnnMathType_t &cudnn_math_type, library::ConvDescription const &conv_desc) {
switch (conv_desc.tile_description.math_instruction.opcode_class) {
case library::OpcodeClassID::kTensorOp:
{
cudnn_math_type = CUDNN_TENSOR_OP_MATH;
library::MathOperationID math_op = conv_desc.tile_description.math_instruction.math_operation;
// Allow conversion on input data type for fast math operations
if (math_op == library::MathOperationID::kMultiplyAddFastF16 ||
math_op == library::MathOperationID::kMultiplyAddFastBF16)
{
cudnn_math_type = CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION;
}
return true;
}
case library::OpcodeClassID::kSimt:
#if (defined(CUDNN_VERSION) && CUDNN_VERSION <= 8000)
cudnn_math_type = CUDNN_DEFAULT_MATH;
#else
cudnn_math_type = CUDNN_FMA_MATH;
#endif
return true;
}
return false;
}
/// Cudnn compute type seems to be hardcoded to float (To handle a possible cudnn issue)
float cast_cudnn_compute_type_to_float(library::NumericTypeID type, void const * src) {
switch (type) {
case library::NumericTypeID::kF16:
{
return float(*(static_cast<half_t const*>(src)));
}
case library::NumericTypeID::kF32:
{
return float(*(static_cast<float const*>(src)));
}
case library::NumericTypeID::kS32:
{
return float(*(static_cast<int const*>(src)));
}
default:
throw std::runtime_error("Data type handled in cast_compute_type_to_float");
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns a status if cuDNN can satisfy a particular Conv2d description
Status cudnn_satisfies(
library::ConvDescription const &desc,
library::Conv2dConfiguration const &configuration) {
auto const &a_tensor = desc.A;
auto const &b_tensor = desc.B;
auto const &c_tensor = desc.C;
auto const &math_instruction = desc.tile_description.math_instruction;
if(a_tensor.element != b_tensor.element) {
return Status::kErrorInvalidDataType;
}
//////////////////////// Convolution output dimensions p and q ///////////////////////
// Cutlass convolutions support arbitrary output dimensions and not constrained by //
// input, filter, padding, striding, dilation sizes. //
// cuDNN sets the output dimensions (p, q) using following equations: //
// //
// output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride) //
// where; div_up(a, b) : (a - 1)/b + 1 //
// //
// Before launching cudnn verification or profiling check that output p and q //
// dimensions are cuDNN compliant. //
// //
// If user sets output p and q which do not follow above constraints, cutlass conv, //
// host reference, device reference can run. However, cudnn convolution returns //
// "Invalid problem" //
// //
///////////////////////////////////////////////////////////////////////////////////////
// check conv output dimension p for cudnn
int cudnn_output_p =
(
(
configuration.problem_size.H +
2 * configuration.problem_size.pad_h -
((configuration.problem_size.R - 1) *
configuration.problem_size.dilation_h + 1)
) /
(configuration.problem_size.stride_h)
+ 1
);
if (cudnn_output_p != configuration.problem_size.P) {
return Status::kErrorInvalidProblem;
}
// check conv output dimension q for cudnn
int cudnn_output_q =
(
(
configuration.problem_size.W +
2 * configuration.problem_size.pad_w -
((configuration.problem_size.S - 1) *
configuration.problem_size.dilation_w + 1)
) /
(configuration.problem_size.stride_w)
+ 1
);
if (cudnn_output_q != configuration.problem_size.Q) {
return Status::kErrorInvalidProblem;
}
//////////////////////////////////////////////////////////////////////////////////////
// conv operator with input=FP16, accumulator=FP32, output=FP32 datatype
if (a_tensor.element == library::NumericTypeID::kF16 &&
b_tensor.element == library::NumericTypeID::kF16 &&
math_instruction.element_accumulator == library::NumericTypeID::kF32 &&
c_tensor.element == library::NumericTypeID::kF32
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kBF16 ||
b_tensor.element == library::NumericTypeID::kBF16 ||
c_tensor.element == library::NumericTypeID::kBF16
) {
return Status::kErrorNotSupported;
}
// TF32 input not supported in cuDNN
if (a_tensor.element == library::NumericTypeID::kTF32 ||
b_tensor.element == library::NumericTypeID::kTF32 ||
c_tensor.element == library::NumericTypeID::kTF32
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kS8 ||
b_tensor.element == library::NumericTypeID::kS8 ||
c_tensor.element == library::NumericTypeID::kS8
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kU8 ||
b_tensor.element == library::NumericTypeID::kU8 ||
c_tensor.element == library::NumericTypeID::kU8
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kS4 ||
b_tensor.element == library::NumericTypeID::kS4 ||
c_tensor.element == library::NumericTypeID::kS4
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kU4 ||
b_tensor.element == library::NumericTypeID::kU4 ||
c_tensor.element == library::NumericTypeID::kU4
) {
return Status::kErrorNotSupported;
}
return Status::kSuccess;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns a status if cuDNN can satisfy a particular Conv3d description
Status cudnn_satisfies(
library::ConvDescription const &desc,
library::Conv3dConfiguration const &configuration) {
auto const &a_tensor = desc.A;
auto const &b_tensor = desc.B;
auto const &c_tensor = desc.C;
auto const &math_instruction = desc.tile_description.math_instruction;
if(a_tensor.element != b_tensor.element) {
return Status::kErrorInvalidDataType;
}
//////////////////////// Convolution output dimensions p and q ///////////////////////
// Cutlass convolutions support arbitrary output dimensions and not constrained by //
// input, filter, padding, striding, dilation sizes. //
// cuDNN sets the output dimensions (p, q) using following equations: //
// //
// output = div_up(input + 2 * pad - ((filter - 1) * dilation + 1) + 1, stride) //
// where; div_up(a, b) : (a - 1)/b + 1 //
// //
// Before launching cudnn verification or profiling check that output p and q //
// dimensions are cuDNN compliant. //
// //
// If user sets output p and q which do not follow above constraints, cutlass conv, //
// host reference, device reference can run. However, cudnn convolution returns //
// "Invalid problem" //
// //
///////////////////////////////////////////////////////////////////////////////////////
// check conv output dimension z for cudnn
int cudnn_output_z =
(
(
configuration.problem_size.D +
2 * configuration.problem_size.pad_d -
((configuration.problem_size.T - 1) *
configuration.problem_size.dilation_d + 1)
) /
(configuration.problem_size.stride_d)
+ 1
);
if (cudnn_output_z != configuration.problem_size.Z) {
return Status::kErrorInvalidProblem;
}
// check conv output dimension p for cudnn
int cudnn_output_p =
(
(
configuration.problem_size.H +
2 * configuration.problem_size.pad_h -
((configuration.problem_size.R - 1) *
configuration.problem_size.dilation_h + 1)
) /
(configuration.problem_size.stride_h)
+ 1
);
if (cudnn_output_p != configuration.problem_size.P) {
return Status::kErrorInvalidProblem;
}
// check conv output dimension q for cudnn
int cudnn_output_q =
(
(
configuration.problem_size.W +
2 * configuration.problem_size.pad_w -
((configuration.problem_size.S - 1) *
configuration.problem_size.dilation_w + 1)
) /
(configuration.problem_size.stride_w)
+ 1
);
if (cudnn_output_q != configuration.problem_size.Q) {
return Status::kErrorInvalidProblem;
}
//////////////////////////////////////////////////////////////////////////////////////
// conv operator with input, accumulator, output datatype of (hss) are not supported
// in cuDNN
if (a_tensor.element == library::NumericTypeID::kF16 &&
b_tensor.element == library::NumericTypeID::kF16 &&
math_instruction.element_accumulator == library::NumericTypeID::kF32 &&
c_tensor.element == library::NumericTypeID::kF32
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kBF16 ||
b_tensor.element == library::NumericTypeID::kBF16 ||
c_tensor.element == library::NumericTypeID::kBF16
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kTF32 ||
b_tensor.element == library::NumericTypeID::kTF32 ||
c_tensor.element == library::NumericTypeID::kTF32
) {
return Status::kErrorNotSupported;
}
if (a_tensor.element == library::NumericTypeID::kS8 ||
b_tensor.element == library::NumericTypeID::kS8 ||
c_tensor.element == library::NumericTypeID::kS8
) {
return Status::kErrorNotSupported;
}
// S4 not supported in cuDNN
if (a_tensor.element == library::NumericTypeID::kS4 ||
b_tensor.element == library::NumericTypeID::kS4 ||
c_tensor.element == library::NumericTypeID::kS4
) {
return Status::kErrorNotSupported;
}
return Status::kSuccess;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace profiler
} // namespace cutlass
#endif