Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
/***************************************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
#include "mask.h"
#include "dropout.h"
#include "alibi.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int MMA_N,
class... Args,
class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
TiledMMA const& tiled_mma) {
constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
constexpr int TileShape_K = decltype(tiled_mma.template tile_size_mnk<2>())::value;
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
// Divide by 2 because right now we always use 2 for the ValLayout
constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
// This gives the correct layout, idk why.
// auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
// Stride<Stride<_1, _64>, _8> >{},
// auto t = make_tile(Layout<Shape<_8, _2, _2>,
// Stride<_1, _64, _8> >{},
auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
Stride<_1, Int<MMAStride_N>, _8> >{}, // (1, 64, 8) or (1, 32, 8)
make_layout(Int<TileShape_K>{}));
// if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n"); }
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int MMA_N,
class... Args,
class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
TiledMMA const& tiled_mma) {
constexpr int TileShape_M = decltype(tiled_mma.template tile_size_mnk<0>())::value;
constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value;
using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
// Divide by 2 because right now we always use 2 for the ValLayout
constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2;
constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
auto t = make_tile(make_layout(Int<TileShape_M>{}),
Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>, // (8, 2, 2) or (8, 4, 2)
Stride<_1, Int<MMAStride_N>, _8> >{}); // (1, 64, 8) or (1, 32, 8)
// if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n"); }
return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int MMA_N_SdP = kBlockN / decltype(typename Kernel_traits::TiledMmaSdP{}.template tile_size_mnk<1>())::value;
constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;
const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
if (Is_local) {
m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
}
const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
+ n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
+ n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
+ (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
+ ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
+ (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride);
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q
+ (m_block_max - 1) * kBlockM;
const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded
+ (m_block_max - 1) * kBlockM;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.v_row_stride, _1{}));
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.do_row_stride, _1{}));
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.dq_row_stride, _1{}));
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.h * params.d_rounded, _1{}));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<Int<kBlockM>>{}, Stride<_1>{});
Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
Shape<Int<kBlockM>>{}, Stride<_1>{});
Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutQdO{});
Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
// Double buffer for sQ
Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
typename Kernel_traits::SmemLayoutPdS{});
Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
// sP and sdQ share the same memory so be careful
Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
using GmemTiledCopydO = std::conditional_t<
Is_first,
typename Kernel_traits::GmemTiledCopydO,
typename Kernel_traits::GmemTiledCopyQKV
>;
GmemTiledCopydO gmem_tiled_copy_dO;
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
using GmemLayoutAtomdQaccum = std::conditional_t<
!Seq_parallel,
typename Kernel_traits::GmemTiledCopydQaccum,
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
>;
GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
// if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
// __syncthreads();
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
// printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
// }
typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ); // (MMA,MMA_N,MMA_K)
Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO); // (MMA,MMA_N,MMA_K)
Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV); // (MMA,MMA_N,MMA_K)
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle); // (MMA, MMA_K, MMA_N)
Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle); // (MMA, MMA_N, MMA_N)
Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS); // (MMA, MMA_N, MMA_N)
Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle); // (MMA, MMA_K, MMA_N)
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
//
// Copy Atom retiling
//
auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);
// auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
// if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
// if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);
// Partition sP and sdS to match the accumulator partitioning
// This has to be tiled_mma_sdp, not tiled_mma_dkv
// auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tensor tPsP = smem_thr_copy_PdS.partition_D(sP); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
// if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
// if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
// printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
// }
Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS); // ((Atom,AtomNum),PIPE_M,PIPE_N)
auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);
auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);
auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);
auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
//
// PREDICATES
//
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);
// Allocate predicate tensors for k
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
// Set predicates for k bounds
if (!Is_even_K) {
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
}
// Prologue
// We'll advance gdQ and gdQaccum before the 1st read/write.
tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
int m_block = m_block_max - 1;
int m_block_min = (!Is_causal && !Is_local)
? 0
: std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
// If not local, we're guaranteed that m_block_min <= m_block:
// We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
// n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
// So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
// Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
// So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
// We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
// However, if local, then this possible to have some blocks of K & V not attending to any query.
// We might need to exit early and write 0 to dK and dV for those blocks.
// Otherwise we get wrong result for the case where we don't enter the for loop.
// And we might read OOB elements from gQ and gdO.
// This also covers the case where actual_seqlen_q == 0
if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dk_row_stride, _1{}));
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dv_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
clear(tdKrdK);
clear(tdVrdV);
Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
#pragma unroll
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
return;
}
if (Double_buffer && m_block % 2 == 1) { // Double buffer for sQ
tQsQ.data() = tQsQ.data() + size(sQ);
tSsQ.data() = tSsQ.data() + size(sQ);
tdKsQt.data() = tdKsQt.data() + size(sQ);
}
if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); }
if (Kernel_traits::Is_V_in_regs) {
// Clear the smem tiles to account for predicated off loads
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
flash::cp_async_fence();
}
Tensor tdOrdO = make_fragment_like(tdOgdO);
Tensor tdOrO = make_fragment_like(tdOgO);
if (!Is_first) {
// Clear the smem tiles to account for predicated off loads
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
} else {
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
}
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
);
Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n)
Tensor taccScS = thr_mma_sdp.partition_C(caccS); // (MMA,MMA_N,MMA_N)
static_assert(decltype(size<0>(taccScS))::value == 4);
// Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccScS_row(mi));
lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
}
// We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
// and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
// with V (which would be zero), we're fine. However, with ALiBi, we might modify these
// scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.
// Tensor tKrK = make_fragment_like(tKsK);
// // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
// cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
// // if (cute::thread(1, 0)) { print(tKrK); }
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
if (!Kernel_traits::Is_V_in_regs) {
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
flash::cp_async_fence();
// if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
if (Is_first) {
cute::copy(tdOrdO, tdOsdO);
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
}
if (Kernel_traits::Is_V_in_regs) {
cute::cp_async_wait<1>();
__syncthreads();
Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view)); // M
cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
}
flash::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t,
bidb, bidh, tidx, params.h);
clear(acc_dv);
clear(acc_dk);
const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
flash::Alibi<Is_causal> alibi(alibi_slope, binfo.actual_seqlen_k, binfo.actual_seqlen_q);
for (; m_block >= m_block_min; --m_block) {
Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
clear(acc_s);
cute::cp_async_wait<0>();
__syncthreads();
Tensor dP_sum = make_fragment_like(lse);
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }
// if (cute::thread0()) { print(sK); }
// Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
// #pragma unroll
// for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
// cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
// }
// if (cute::thread0()) { print(tSrK); }
flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
// Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
// if (cute::thread(32, 0)) { print(scores); }
if (Has_alibi) {
alibi.apply_alibi(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
m_block * kBlockM + get<0>(taccScS_row(0)), AtomLayoutMS * 16);
}
// TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
// actual_seqlen_k, because acc_s would be some finite value for those indices.
// In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
// so the result would still be correct.
// However, it's possible that the values in acc_s are so large that they overflow
// when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
// So we need to mask out the elements beyond actual_seqlen_k.
if (!Is_causal && !Is_local) {
if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
flash::apply_mask(scores, binfo.actual_seqlen_k,
n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
}
} else if (Is_causal) {
// Putting this causal masking right after acc_s is *much* slower for some reason.
// TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
// (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
// But we still want to mask out elements beyond actual_seqlen_k.
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
binfo.actual_seqlen_q,
// binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
AtomLayoutMS * 16);
}
} else if (Is_local) {
if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
|| (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
flash::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
binfo.actual_seqlen_q, AtomLayoutMS * 16,
params.window_size_left, params.window_size_right);
}
}
// if (cute::thread(32, 0)) { print(scores); }
// Compute the exponential value.
flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
if constexpr (Is_dropout) {
int warp_id = tidx / 32;
int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
// Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
static_assert(MMA_N_SdP % 2 == 0);
int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
acc_s, block_row_idx, block_col_idx, AtomLayoutMS
);
}
// Convert scores from fp32 to fp16/bf16
Tensor rP = !Is_dropout
? flash::convert_type<Element>(acc_s)
: flash::convert_type_relu<Element>(acc_s);
// Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_N, MMA_N / 2)
// if using m16n8k16 or (4, MMA_N, MMA_N) if using m16n8k8.
Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
// if (cute::thread0()) { print(tPaP); }
// __syncthreads();
// if (cute::thread0()) { print(sP); }
Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{}); // (MMA=4, MMA_N, MMA_N)
CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s)); // MMA
CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s)); // MMA
CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s)); // MMA
clear(acc_dp);
// Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout()));
// #pragma unroll
// for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
// #pragma unroll
// for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
// acc_dp_reshaped(mi, ni) = -dP_sum(mi);
// }
// }
// if (cute::thread0()) { print(dP_sum); }
flash::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
);
// Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
Tensor dS = make_tensor(acc_dp.data(), scores.layout());
auto pointwise_mult = [](float p, float dp, float d) {
return p * (!Is_dropout || p >= 0 ? dp - d : d);
};
#pragma unroll
for (int mi = 0; mi < size<0>(dS); ++mi) {
#pragma unroll
for (int ni = 0; ni < size<1>(dS); ++ni) {
dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
}
}
// if (cute::thread0()) { print(dS); }
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
if (Is_first || Seq_parallel) {
clear(acc_dq);
} else {
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
make_layout(get<0>(acc_dq.layout()),
get<2>(acc_dq.layout()),
get<1>(acc_dq.layout())));
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
}
if (Double_buffer && m_block > m_block_min) {
// Double buffer for sQ
const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
tQsQ.data() = tQsQ.data() + sQ_offset;
tSsQ.data() = tSsQ.data() + sQ_offset;
// Advance gQ
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
flash::cp_async_fence();
}
Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
// Convert dS from fp32 to fp16
Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
// if (cute::thread0()) { print(tPrP); }
Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
__syncthreads();
// Layout p_l = tPrP.layout();
// Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
// flash::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
// Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
// flash::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
// if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
// if (cute::thread0()) { print(acc_dv); }
__syncthreads(); // Need syncthreads since we're writing to the same sdO location
if (m_block > m_block_min) {
// Advance gdO
tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
if (Is_first) {
tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
} else {
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
flash::cp_async_fence();
}
}
flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
// if (cute::thread0()) { print(acc_dq); }
if (m_block > m_block_min) {
gLSE.data() = gLSE.data() + (-int(kBlockM));
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
gdPsum.data() = gdPsum.data() + (-int(kBlockM));
}
if (!Is_last) {
// Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
make_layout(get<0>(acc_dq.layout()),
get<2>(acc_dq.layout()),
get<1>(acc_dq.layout())));
if (!Seq_parallel) {
cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
} else {
// if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
}
} else {
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
// Convert acc_dq from fp32 to fp16
Tensor rdQ = flash::convert_type<Element>(acc_dq);
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
}
flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
// if (cute::thread0()) { print(acc_dk); }
if (Double_buffer) { // Double buffer for sQ
tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
}
if (!Double_buffer && m_block > m_block_min) {
__syncthreads();
// Advance gQ
tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
flash::cp_async_fence();
}
if (Is_first && m_block > m_block_min) {
cute::copy(tdOrdO, tdOsdO);
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
}
if (Is_last) {
__syncthreads();
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
#pragma unroll
for (int m = 0; m < size<1>(tdQgdQ); ++m) {
if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
}
}
}
}
// Epilogue
if (Is_dropout) {
#pragma unroll
for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
}
#pragma unroll
for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }
// Convert acc_dv from fp32 to fp16
Tensor rdK = flash::convert_type<Element>(acc_dk);
Tensor rdV = flash::convert_type<Element>(acc_dv);
Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
// Partition sdV and sdK to match the accumulator partitioning
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// We need syncthreads here since we're writing to the same location as sK and sV.
// Without syncthreads, some thread might modify the location of sK while another thread
// is reading it for dQ gemm, leading to a race condition.
// If Is_last, there's already a __syncthreads() at the end of the loop.
if (!Is_last) { __syncthreads(); }
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dk_row_stride, _1{}));
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dv_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
__syncthreads();
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
#pragma unroll
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv(const Params &params) {
// The block index for the batch.
const int bidb = blockIdx.x;
// const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.y;
// const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
if (n_block_max == 1) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
} else {
// Iterating backward from n_block_max - 1 to 0 might save 1 register
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
}
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) {
compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash