Spaces:
Sleeping
Sleeping
if (TYPE == at::ScalarType::Half) { \ | |
using scalar_t = at::Half; \ | |
__VA_ARGS__(); \ | |
} else if (TYPE == at::ScalarType::BFloat16) { \ | |
using scalar_t = at::BFloat16; \ | |
__VA_ARGS__(); \ | |
} else if (TYPE == at::ScalarType::Float) { \ | |
using scalar_t = float; \ | |
__VA_ARGS__(); \ | |
} else { \ | |
AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \ | |
} | |
template<typename T> | |
void masked_multihead_attention(const Masked_multihead_attention_params<T>& params, | |
const cudaStream_t& stream); | |
template<typename T> | |
void cross_multihead_attention(const Masked_multihead_attention_params<T>& params, | |
const cudaStream_t& stream); | |
template<typename T> | |
struct SATypeConverter { | |
using Type = T; | |
}; | |
template<> | |
struct SATypeConverter<at::Half> { | |
using Type = uint16_t; | |
}; | |
template<> | |
struct SATypeConverter<at::BFloat16> { | |
using Type = __nv_bfloat16; | |
}; | |
template <typename T> | |
void set_params(Masked_multihead_attention_params<T> ¶ms, | |
const size_t batch_size, | |
const size_t nheads, | |
const size_t nheads_kv, | |
const size_t memory_max_seqlen, | |
const size_t headdim, | |
const int timestep, | |
const int rotary_embedding_dim, | |
const float rotary_base, | |
const bool neox_rotary_style, | |
const int q_batch_stride, | |
const int k_batch_stride, | |
const int v_batch_stride, | |
const int nnz_heads, | |
T *q_ptr, | |
T *k_ptr, | |
T *v_ptr, | |
T *k_cache_ptr, | |
T *v_cache_ptr, | |
int *length_per_sample, | |
T *rotary_cos, | |
T *rotary_sin, | |
T *out_ptr, | |
int *nnz_head_idx) { | |
// Reset the parameters | |
memset(¶ms, 0, sizeof(params)); | |
params.q = q_ptr; | |
params.k = k_ptr; | |
params.v = v_ptr; | |
params.q_bias = nullptr; | |
params.k_bias = nullptr; | |
params.v_bias = nullptr; | |
params.k_cache = k_cache_ptr; | |
params.v_cache = v_cache_ptr; | |
params.out = out_ptr; | |
params.cache_indir = nullptr; | |
params.stride_q = q_batch_stride; | |
params.stride_k = k_batch_stride; | |
params.stride_v = v_batch_stride; | |
params.batch_size = batch_size; | |
params.beam_width = 1; | |
params.memory_max_len = memory_max_seqlen; | |
params.num_heads = nheads; | |
params.num_heads_kv = nheads_kv; | |
params.num_heads_q_kv_ratio = nheads / nheads_kv; | |
params.nnz_heads = nnz_heads; | |
params.hidden_size_per_head = headdim; | |
params.rotary_embedding_dim = rotary_embedding_dim; | |
params.rotary_base = rotary_base; | |
params.neox_rotary_style = neox_rotary_style; | |
params.timestep = timestep; | |
params.inv_sqrt_dh = 1.f / sqrt(float(headdim)); | |
params.total_padding_tokens = nullptr; | |
params.masked_tokens = nullptr; | |
params.prefix_prompt_lengths = nullptr; | |
params.max_prefix_prompt_length = 0; | |
params.relative_attention_bias = nullptr; | |
params.relative_attention_bias_stride = 0; | |
params.cross_attention_out = nullptr; | |
params.max_decoder_seq_len = 0; | |
params.is_return_cross_attentions = false; | |
params.finished = nullptr; | |
params.memory_length_per_sample = nullptr; | |
params.length_per_sample = length_per_sample; | |
params.rotary_cos = rotary_cos; | |
params.rotary_sin = rotary_sin; | |
params.nnz_head_idx = nnz_head_idx; | |
} | |
torch::Tensor single_query_attention(const torch::Tensor q, | |
const torch::Tensor k, | |
const torch::Tensor v, | |
torch::Tensor k_cache, | |
torch::Tensor v_cache, | |
c10::optional<const torch::Tensor> length_per_sample_, | |
c10::optional<const torch::Tensor> rotary_cos_, | |
c10::optional<const torch::Tensor> rotary_sin_, | |
c10::optional<const torch::Tensor> nnz_head_idx_, | |
const int timestep, | |
int rotary_embedding_dim = 0, | |
const float rotary_base = 10000.0f, | |
const bool neox_rotary_style=true) { | |
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(k_cache); CHECK_DEVICE(v_cache); | |
int batch_size = v_cache.size(0); | |
int nheads = q.size(1); | |
int nheads_kv = v_cache.size(1); | |
int memory_max_seqlen = v_cache.size(2); | |
int headdim = v_cache.size(3); | |
auto input_type = q.scalar_type(); | |
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16); | |
CHECK_SHAPE(q, batch_size, nheads, headdim); | |
CHECK_SHAPE(k, batch_size, nheads_kv, headdim); | |
CHECK_SHAPE(v, batch_size, nheads_kv, headdim); | |
CHECK_SHAPE(v_cache, batch_size, nheads_kv, memory_max_seqlen, headdim); | |
// k_cache shape: [B, H, Dh/x, L, x] where x=8 for fp16 and x=4 for fp32 | |
int packsize = k_cache.dtype() == torch::kFloat32 ? 4 : 8; | |
CHECK_SHAPE(k_cache, batch_size, nheads_kv, headdim / packsize, memory_max_seqlen, packsize); | |
TORCH_CHECK(q.stride(2) == 1 && q.stride(1) == headdim); | |
TORCH_CHECK(k.stride(2) == 1 && k.stride(1) == headdim); | |
TORCH_CHECK(v.stride(2) == 1 && v.stride(1) == headdim); | |
CHECK_CONTIGUOUS(v_cache); CHECK_CONTIGUOUS(k_cache); | |
TORCH_CHECK(q.scalar_type() == input_type); | |
TORCH_CHECK(k.scalar_type() == input_type); | |
TORCH_CHECK(v.scalar_type() == input_type); | |
TORCH_CHECK(k_cache.scalar_type() == input_type); | |
TORCH_CHECK(v_cache.scalar_type() == input_type); | |
if (length_per_sample_.has_value()) { | |
auto length_per_sample = length_per_sample_.value(); | |
CHECK_DEVICE(length_per_sample); | |
CHECK_SHAPE(length_per_sample, batch_size); | |
CHECK_CONTIGUOUS(length_per_sample); | |
TORCH_CHECK(length_per_sample.dtype() == torch::kInt32); | |
} | |
if (rotary_cos_.has_value()) { | |
auto rotary_cos = rotary_cos_.value(); | |
CHECK_DEVICE(rotary_cos); | |
rotary_embedding_dim = rotary_cos.size(-1) * 2; | |
CHECK_SHAPE(rotary_cos, batch_size, rotary_embedding_dim / 2); | |
CHECK_CONTIGUOUS(rotary_cos); | |
TORCH_CHECK(rotary_cos.scalar_type() == input_type); | |
TORCH_CHECK(rotary_sin_.has_value()); | |
auto rotary_sin = rotary_sin_.value(); | |
CHECK_DEVICE(rotary_sin); | |
CHECK_SHAPE(rotary_sin, batch_size, rotary_embedding_dim / 2); | |
CHECK_CONTIGUOUS(rotary_sin); | |
TORCH_CHECK(rotary_sin.scalar_type() == input_type); | |
} | |
if (nnz_head_idx_.has_value()) { | |
auto nnz_head_idx = nnz_head_idx_.value(); | |
CHECK_DEVICE(nnz_head_idx); | |
int nnz_heads = nnz_head_idx.size(0); | |
CHECK_SHAPE(nnz_head_idx, nnz_heads); | |
CHECK_CONTIGUOUS(nnz_head_idx); | |
TORCH_CHECK(nnz_head_idx.dtype() == torch::kInt32); | |
} | |
// Otherwise the kernel will be launched from cuda:0 device | |
// Cast to char to avoid compiler warning about narrowing | |
at::cuda::CUDAGuard device_guard{(char)q.get_device()}; | |
torch::Tensor out = torch::empty_like(q); | |
DISPATCH_FLOAT_AND_HALF_AND_BF16(q.scalar_type(), "single_query_attention", [&] { | |
using DataType = typename SATypeConverter<scalar_t>::Type; | |
Masked_multihead_attention_params<DataType> params; | |
set_params(params, batch_size, nheads, nheads_kv, memory_max_seqlen, headdim, timestep, | |
rotary_embedding_dim, rotary_base, neox_rotary_style, | |
q.stride(0), k.stride(0), v.stride(0), | |
nnz_head_idx_.has_value() ? nnz_head_idx_.value().size(0) : 0, | |
reinterpret_cast<DataType*>(q.data_ptr()), | |
reinterpret_cast<DataType*>(k.data_ptr()), | |
reinterpret_cast<DataType*>(v.data_ptr()), | |
reinterpret_cast<DataType*>(k_cache.data_ptr()), | |
reinterpret_cast<DataType*>(v_cache.data_ptr()), | |
length_per_sample_.has_value() | |
? length_per_sample_.value().data_ptr<int>() : nullptr, | |
rotary_cos_.has_value() | |
? reinterpret_cast<DataType*>(rotary_cos_.value().data_ptr()) : nullptr, | |
rotary_sin_.has_value() | |
? reinterpret_cast<DataType*>(rotary_sin_.value().data_ptr()) : nullptr, | |
reinterpret_cast<DataType*>(out.data_ptr()), | |
nnz_head_idx_.has_value() ? nnz_head_idx_.value().data_ptr<int>() : nullptr | |
); | |
auto stream = at::cuda::getCurrentCUDAStream(); | |
masked_multihead_attention(params, stream); | |
}); | |
return out; | |
} | |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
m.def("single_query_attention", &single_query_attention, "Attention with a single query", | |
py::arg("q"), py::arg("k"), py::arg("v"), py::arg("k_cache"), py::arg("v_cache"), | |
py::arg("length_per_sample_"), py::arg("rotary_cos_"), | |
py::arg("rotary_sin_"), py::arg("nnz_head_idx_"), | |
py::arg("timestep"), py::arg("rotary_embedding_dim")=0, | |
py::arg("rotary_base")=10000.0f, py::arg("neox_rotary_style")=true); | |
} | |