Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
#include <torch/extension.h>
// CUDA forward declarations
std::vector<at::Tensor> softmax_xentropy_cuda(
const at::Tensor &input,
const at::Tensor &labels,
const float smoothing,
const int total_classes);
at::Tensor softmax_xentropy_backward_cuda(
const at::Tensor &grad_loss,
at::Tensor &logits,
const at::Tensor &max_log_sum_exp,
const at::Tensor &labels,
const float smoothing,
const bool inplace,
const int total_classes);
// C++ interface
#define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
std::vector<at::Tensor> softmax_xentropy_forward(
const at::Tensor &input,
const at::Tensor &labels,
const float smoothing,
const int total_classes=-1) {
// For tensor parallel cross entropy with smoothing, we want to pass in the total number
// of classes so that smoothing can be applied correctly. If total_classes=-1, use the
// last dimension of the input tensor.
CHECK_INPUT(input);
CHECK_INPUT(labels);
return softmax_xentropy_cuda(input, labels, smoothing, total_classes);
}
at::Tensor softmax_xentropy_backward(
const at::Tensor &grad_loss,
at::Tensor &logits,
const at::Tensor &max_log_sum_exp,
const at::Tensor &labels,
const float smoothing,
const bool inplace,
const int total_classes=-1) {
CHECK_INPUT(grad_loss);
CHECK_INPUT(logits);
CHECK_INPUT(max_log_sum_exp);
CHECK_INPUT(labels);
return softmax_xentropy_backward_cuda(grad_loss, logits, max_log_sum_exp, labels,
smoothing, inplace, total_classes);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &softmax_xentropy_forward, "Softmax cross entropy loss with label smoothing forward (CUDA)", py::arg("input"), py::arg("labels"), py::arg("smoothing"), py::arg("total_classes")=-1);
m.def("backward", &softmax_xentropy_backward, "Softmax cross entropy loss with label smoothing backward (CUDA)", py::arg("grad_loss"), py::arg("logits"), py::arg("max_log_sum_exp"), py::arg("labels"), py::arg("smoothing"), py::arg("inplace"), py::arg("total_classes")=-1);
}