Spaces:
Sleeping
Sleeping
# Copyright (c) 2024, Tri Dao. | |
# Implement dropout + residual + layer_norm / rms_norm. | |
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html | |
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate. | |
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling. | |
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine. | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch.cuda.amp import custom_fwd, custom_bwd | |
import triton | |
import triton.language as tl | |
def layer_norm_ref( | |
x, | |
weight, | |
bias, | |
residual=None, | |
x1=None, | |
weight1=None, | |
bias1=None, | |
eps=1e-6, | |
dropout_p=0.0, | |
rowscale=None, | |
prenorm=False, | |
dropout_mask=None, | |
dropout_mask1=None, | |
upcast=False, | |
): | |
dtype = x.dtype | |
if upcast: | |
x = x.float() | |
weight = weight.float() | |
bias = bias.float() if bias is not None else None | |
residual = residual.float() if residual is not None else residual | |
x1 = x1.float() if x1 is not None else None | |
weight1 = weight1.float() if weight1 is not None else None | |
bias1 = bias1.float() if bias1 is not None else None | |
if x1 is not None: | |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm" | |
if rowscale is not None: | |
x = x * rowscale[..., None] | |
if dropout_p > 0.0: | |
if dropout_mask is not None: | |
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p) | |
else: | |
x = F.dropout(x, p=dropout_p) | |
if x1 is not None: | |
if dropout_mask1 is not None: | |
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p) | |
else: | |
x1 = F.dropout(x1, p=dropout_p) | |
if x1 is not None: | |
x = x + x1 | |
if residual is not None: | |
x = (x + residual).to(x.dtype) | |
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to( | |
dtype | |
) | |
if weight1 is None: | |
return out if not prenorm else (out, x) | |
else: | |
out1 = F.layer_norm( | |
x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps | |
).to(dtype) | |
return (out, out1) if not prenorm else (out, out1, x) | |
def rms_norm_ref( | |
x, | |
weight, | |
bias, | |
residual=None, | |
x1=None, | |
weight1=None, | |
bias1=None, | |
eps=1e-6, | |
dropout_p=0.0, | |
rowscale=None, | |
prenorm=False, | |
dropout_mask=None, | |
dropout_mask1=None, | |
upcast=False, | |
): | |
dtype = x.dtype | |
if upcast: | |
x = x.float() | |
weight = weight.float() | |
bias = bias.float() if bias is not None else None | |
residual = residual.float() if residual is not None else residual | |
x1 = x1.float() if x1 is not None else None | |
weight1 = weight1.float() if weight1 is not None else None | |
bias1 = bias1.float() if bias1 is not None else None | |
if x1 is not None: | |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm" | |
if rowscale is not None: | |
x = x * rowscale[..., None] | |
if dropout_p > 0.0: | |
if dropout_mask is not None: | |
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p) | |
else: | |
x = F.dropout(x, p=dropout_p) | |
if x1 is not None: | |
if dropout_mask1 is not None: | |
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p) | |
else: | |
x1 = F.dropout(x1, p=dropout_p) | |
if x1 is not None: | |
x = x + x1 | |
if residual is not None: | |
x = (x + residual).to(x.dtype) | |
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps) | |
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype) | |
if weight1 is None: | |
return out if not prenorm else (out, x) | |
else: | |
out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to( | |
dtype | |
) | |
return (out, out1) if not prenorm else (out, out1, x) | |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) | |
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None}) | |
def _layer_norm_fwd_1pass_kernel( | |
X, # pointer to the input | |
Y, # pointer to the output | |
W, # pointer to the weights | |
B, # pointer to the biases | |
RESIDUAL, # pointer to the residual | |
X1, | |
W1, | |
B1, | |
Y1, | |
RESIDUAL_OUT, # pointer to the residual | |
ROWSCALE, | |
SEEDS, # Dropout seeds for each row | |
DROPOUT_MASK, | |
Mean, # pointer to the mean | |
Rstd, # pointer to the 1/std | |
stride_x_row, # how much to increase the pointer when moving by 1 row | |
stride_y_row, | |
stride_res_row, | |
stride_res_out_row, | |
stride_x1_row, | |
stride_y1_row, | |
M, # number of rows in X | |
N, # number of columns in X | |
eps, # epsilon to avoid division by zero | |
dropout_p, # Dropout probability | |
IS_RMS_NORM: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
HAS_RESIDUAL: tl.constexpr, | |
STORE_RESIDUAL_OUT: tl.constexpr, | |
HAS_BIAS: tl.constexpr, | |
HAS_DROPOUT: tl.constexpr, | |
STORE_DROPOUT_MASK: tl.constexpr, | |
HAS_ROWSCALE: tl.constexpr, | |
HAS_X1: tl.constexpr, | |
HAS_W1: tl.constexpr, | |
HAS_B1: tl.constexpr, | |
): | |
# Map the program id to the row of X and Y it should compute. | |
row = tl.program_id(0) | |
X += row * stride_x_row | |
Y += row * stride_y_row | |
if HAS_RESIDUAL: | |
RESIDUAL += row * stride_res_row | |
if STORE_RESIDUAL_OUT: | |
RESIDUAL_OUT += row * stride_res_out_row | |
if HAS_X1: | |
X1 += row * stride_x1_row | |
if HAS_W1: | |
Y1 += row * stride_y1_row | |
# Compute mean and variance | |
cols = tl.arange(0, BLOCK_N) | |
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) | |
if HAS_ROWSCALE: | |
rowscale = tl.load(ROWSCALE + row).to(tl.float32) | |
x *= rowscale | |
if HAS_DROPOUT: | |
# Compute dropout mask | |
# 7 rounds is good enough, and reduces register pressure | |
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p | |
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0) | |
if STORE_DROPOUT_MASK: | |
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N) | |
if HAS_X1: | |
x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32) | |
if HAS_ROWSCALE: | |
rowscale = tl.load(ROWSCALE + M + row).to(tl.float32) | |
x1 *= rowscale | |
if HAS_DROPOUT: | |
# Compute dropout mask | |
# 7 rounds is good enough, and reduces register pressure | |
keep_mask = ( | |
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p | |
) | |
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0) | |
if STORE_DROPOUT_MASK: | |
tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N) | |
x += x1 | |
if HAS_RESIDUAL: | |
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32) | |
x += residual | |
if STORE_RESIDUAL_OUT: | |
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) | |
if not IS_RMS_NORM: | |
mean = tl.sum(x, axis=0) / N | |
tl.store(Mean + row, mean) | |
xbar = tl.where(cols < N, x - mean, 0.0) | |
var = tl.sum(xbar * xbar, axis=0) / N | |
else: | |
xbar = tl.where(cols < N, x, 0.0) | |
var = tl.sum(xbar * xbar, axis=0) / N | |
rstd = 1 / tl.sqrt(var + eps) | |
tl.store(Rstd + row, rstd) | |
# Normalize and apply linear transformation | |
mask = cols < N | |
w = tl.load(W + cols, mask=mask).to(tl.float32) | |
if HAS_BIAS: | |
b = tl.load(B + cols, mask=mask).to(tl.float32) | |
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd | |
y = x_hat * w + b if HAS_BIAS else x_hat * w | |
# Write output | |
tl.store(Y + cols, y, mask=mask) | |
if HAS_W1: | |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32) | |
if HAS_B1: | |
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32) | |
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1 | |
tl.store(Y1 + cols, y1, mask=mask) | |
def _layer_norm_fwd( | |
x, | |
weight, | |
bias, | |
eps, | |
residual=None, | |
x1=None, | |
weight1=None, | |
bias1=None, | |
dropout_p=0.0, | |
rowscale=None, | |
out_dtype=None, | |
residual_dtype=None, | |
is_rms_norm=False, | |
return_dropout_mask=False, | |
): | |
if residual is not None: | |
residual_dtype = residual.dtype | |
M, N = x.shape | |
assert x.stride(-1) == 1 | |
if residual is not None: | |
assert residual.stride(-1) == 1 | |
assert residual.shape == (M, N) | |
assert weight.shape == (N,) | |
assert weight.stride(-1) == 1 | |
if bias is not None: | |
assert bias.stride(-1) == 1 | |
assert bias.shape == (N,) | |
if x1 is not None: | |
assert x1.shape == x.shape | |
assert rowscale is None | |
assert x1.stride(-1) == 1 | |
if weight1 is not None: | |
assert weight1.shape == (N,) | |
assert weight1.stride(-1) == 1 | |
if bias1 is not None: | |
assert bias1.shape == (N,) | |
assert bias1.stride(-1) == 1 | |
if rowscale is not None: | |
assert rowscale.is_contiguous() | |
assert rowscale.shape == (M,) | |
# allocate output | |
y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype) | |
assert y.stride(-1) == 1 | |
if weight1 is not None: | |
y1 = torch.empty_like(y) | |
assert y1.stride(-1) == 1 | |
else: | |
y1 = None | |
if ( | |
residual is not None | |
or (residual_dtype is not None and residual_dtype != x.dtype) | |
or dropout_p > 0.0 | |
or rowscale is not None | |
or x1 is not None | |
): | |
residual_out = torch.empty( | |
M, N, device=x.device, dtype=residual_dtype if residual_dtype is not None else x.dtype | |
) | |
assert residual_out.stride(-1) == 1 | |
else: | |
residual_out = None | |
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None | |
rstd = torch.empty((M,), dtype=torch.float32, device=x.device) | |
if dropout_p > 0.0: | |
seeds = torch.randint( | |
2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64 | |
) | |
else: | |
seeds = None | |
if return_dropout_mask and dropout_p > 0.0: | |
dropout_mask = torch.empty(M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool) | |
else: | |
dropout_mask = None | |
# Less than 64KB per feature: enqueue fused kernel | |
MAX_FUSED_SIZE = 65536 // x.element_size() | |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) | |
if N > BLOCK_N: | |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") | |
with torch.cuda.device(x.device.index): | |
_layer_norm_fwd_1pass_kernel[(M,)]( | |
x, | |
y, | |
weight, | |
bias, | |
residual, | |
x1, | |
weight1, | |
bias1, | |
y1, | |
residual_out, | |
rowscale, | |
seeds, | |
dropout_mask, | |
mean, | |
rstd, | |
x.stride(0), | |
y.stride(0), | |
residual.stride(0) if residual is not None else 0, | |
residual_out.stride(0) if residual_out is not None else 0, | |
x1.stride(0) if x1 is not None else 0, | |
y1.stride(0) if y1 is not None else 0, | |
M, | |
N, | |
eps, | |
dropout_p, | |
is_rms_norm, | |
BLOCK_N, | |
residual is not None, | |
residual_out is not None, | |
bias is not None, | |
dropout_p > 0.0, | |
dropout_mask is not None, | |
rowscale is not None, | |
) | |
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0 | |
if dropout_mask is not None and x1 is not None: | |
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0) | |
else: | |
dropout_mask1 = None | |
return ( | |
y, | |
y1, | |
mean, | |
rstd, | |
residual_out if residual_out is not None else x, | |
seeds, | |
dropout_mask, | |
dropout_mask1, | |
) | |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) | |
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None}) | |
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None}) | |
def _layer_norm_bwd_kernel( | |
X, # pointer to the input | |
W, # pointer to the weights | |
B, # pointer to the biases | |
Y, # pointer to the output to be recomputed | |
DY, # pointer to the output gradient | |
DX, # pointer to the input gradient | |
DW, # pointer to the partial sum of weights gradient | |
DB, # pointer to the partial sum of biases gradient | |
DRESIDUAL, | |
W1, | |
DY1, | |
DX1, | |
DW1, | |
DB1, | |
DRESIDUAL_IN, | |
ROWSCALE, | |
SEEDS, | |
Mean, # pointer to the mean | |
Rstd, # pointer to the 1/std | |
stride_x_row, # how much to increase the pointer when moving by 1 row | |
stride_y_row, | |
stride_dy_row, | |
stride_dx_row, | |
stride_dres_row, | |
stride_dy1_row, | |
stride_dx1_row, | |
stride_dres_in_row, | |
M, # number of rows in X | |
N, # number of columns in X | |
eps, # epsilon to avoid division by zero | |
dropout_p, | |
rows_per_program, | |
IS_RMS_NORM: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
HAS_DRESIDUAL: tl.constexpr, | |
STORE_DRESIDUAL: tl.constexpr, | |
HAS_BIAS: tl.constexpr, | |
HAS_DROPOUT: tl.constexpr, | |
HAS_ROWSCALE: tl.constexpr, | |
HAS_DY1: tl.constexpr, | |
HAS_DX1: tl.constexpr, | |
HAS_B1: tl.constexpr, | |
RECOMPUTE_OUTPUT: tl.constexpr, | |
): | |
# Map the program id to the elements of X, DX, and DY it should compute. | |
row_block_id = tl.program_id(0) | |
row_start = row_block_id * rows_per_program | |
# Do not early exit if row_start >= M, because we need to write DW and DB | |
cols = tl.arange(0, BLOCK_N) | |
mask = cols < N | |
X += row_start * stride_x_row | |
if HAS_DRESIDUAL: | |
DRESIDUAL += row_start * stride_dres_row | |
if STORE_DRESIDUAL: | |
DRESIDUAL_IN += row_start * stride_dres_in_row | |
DY += row_start * stride_dy_row | |
DX += row_start * stride_dx_row | |
if HAS_DY1: | |
DY1 += row_start * stride_dy1_row | |
if HAS_DX1: | |
DX1 += row_start * stride_dx1_row | |
if RECOMPUTE_OUTPUT: | |
Y += row_start * stride_y_row | |
w = tl.load(W + cols, mask=mask).to(tl.float32) | |
if RECOMPUTE_OUTPUT and HAS_BIAS: | |
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32) | |
if HAS_DY1: | |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32) | |
dw = tl.zeros((BLOCK_N,), dtype=tl.float32) | |
if HAS_BIAS: | |
db = tl.zeros((BLOCK_N,), dtype=tl.float32) | |
if HAS_DY1: | |
dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32) | |
if HAS_B1: | |
db1 = tl.zeros((BLOCK_N,), dtype=tl.float32) | |
row_end = min((row_block_id + 1) * rows_per_program, M) | |
for row in range(row_start, row_end): | |
# Load data to SRAM | |
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) | |
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) | |
if HAS_DY1: | |
dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32) | |
if not IS_RMS_NORM: | |
mean = tl.load(Mean + row) | |
rstd = tl.load(Rstd + row) | |
# Compute dx | |
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd | |
xhat = tl.where(mask, xhat, 0.0) | |
if RECOMPUTE_OUTPUT: | |
y = xhat * w + b if HAS_BIAS else xhat * w | |
tl.store(Y + cols, y, mask=mask) | |
wdy = w * dy | |
dw += dy * xhat | |
if HAS_BIAS: | |
db += dy | |
if HAS_DY1: | |
wdy += w1 * dy1 | |
dw1 += dy1 * xhat | |
if HAS_B1: | |
db1 += dy1 | |
if not IS_RMS_NORM: | |
c1 = tl.sum(xhat * wdy, axis=0) / N | |
c2 = tl.sum(wdy, axis=0) / N | |
dx = (wdy - (xhat * c1 + c2)) * rstd | |
else: | |
c1 = tl.sum(xhat * wdy, axis=0) / N | |
dx = (wdy - xhat * c1) * rstd | |
if HAS_DRESIDUAL: | |
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32) | |
dx += dres | |
# Write dx | |
if STORE_DRESIDUAL: | |
tl.store(DRESIDUAL_IN + cols, dx, mask=mask) | |
if HAS_DX1: | |
if HAS_DROPOUT: | |
keep_mask = ( | |
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p | |
) | |
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0) | |
else: | |
dx1 = dx | |
tl.store(DX1 + cols, dx1, mask=mask) | |
if HAS_DROPOUT: | |
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p | |
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0) | |
if HAS_ROWSCALE: | |
rowscale = tl.load(ROWSCALE + row).to(tl.float32) | |
dx *= rowscale | |
tl.store(DX + cols, dx, mask=mask) | |
X += stride_x_row | |
if HAS_DRESIDUAL: | |
DRESIDUAL += stride_dres_row | |
if STORE_DRESIDUAL: | |
DRESIDUAL_IN += stride_dres_in_row | |
if RECOMPUTE_OUTPUT: | |
Y += stride_y_row | |
DY += stride_dy_row | |
DX += stride_dx_row | |
if HAS_DY1: | |
DY1 += stride_dy1_row | |
if HAS_DX1: | |
DX1 += stride_dx1_row | |
tl.store(DW + row_block_id * N + cols, dw, mask=mask) | |
if HAS_BIAS: | |
tl.store(DB + row_block_id * N + cols, db, mask=mask) | |
if HAS_DY1: | |
tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask) | |
if HAS_B1: | |
tl.store(DB1 + row_block_id * N + cols, db1, mask=mask) | |
def _layer_norm_bwd( | |
dy, | |
x, | |
weight, | |
bias, | |
eps, | |
mean, | |
rstd, | |
dresidual=None, | |
dy1=None, | |
weight1=None, | |
bias1=None, | |
seeds=None, | |
dropout_p=0.0, | |
rowscale=None, | |
has_residual=False, | |
has_x1=False, | |
is_rms_norm=False, | |
x_dtype=None, | |
recompute_output=False, | |
): | |
M, N = x.shape | |
assert x.stride(-1) == 1 | |
assert dy.stride(-1) == 1 | |
assert dy.shape == (M, N) | |
if dresidual is not None: | |
assert dresidual.stride(-1) == 1 | |
assert dresidual.shape == (M, N) | |
assert weight.shape == (N,) | |
assert weight.stride(-1) == 1 | |
if bias is not None: | |
assert bias.stride(-1) == 1 | |
assert bias.shape == (N,) | |
if dy1 is not None: | |
assert weight1 is not None | |
assert dy1.shape == dy.shape | |
assert dy1.stride(-1) == 1 | |
if weight1 is not None: | |
assert weight1.shape == (N,) | |
assert weight1.stride(-1) == 1 | |
if bias1 is not None: | |
assert bias1.shape == (N,) | |
assert bias1.stride(-1) == 1 | |
if seeds is not None: | |
assert seeds.is_contiguous() | |
assert seeds.shape == (M if not has_x1 else M * 2,) | |
if rowscale is not None: | |
assert rowscale.is_contiguous() | |
assert rowscale.shape == (M,) | |
# allocate output | |
dx = ( | |
torch.empty_like(x) | |
if x_dtype is None | |
else torch.empty(M, N, dtype=x_dtype, device=x.device) | |
) | |
dresidual_in = ( | |
torch.empty_like(x) | |
if has_residual | |
and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1) | |
else None | |
) | |
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None | |
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None | |
if recompute_output: | |
assert weight1 is None, "recompute_output is not supported with parallel LayerNorm" | |
# Less than 64KB per feature: enqueue fused kernel | |
MAX_FUSED_SIZE = 65536 // x.element_size() | |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) | |
if N > BLOCK_N: | |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") | |
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count | |
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device) | |
_db = ( | |
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) | |
if bias is not None | |
else None | |
) | |
_dw1 = torch.empty_like(_dw) if weight1 is not None else None | |
_db1 = torch.empty_like(_db) if bias1 is not None else None | |
rows_per_program = math.ceil(M / sm_count) | |
grid = (sm_count,) | |
with torch.cuda.device(x.device.index): | |
_layer_norm_bwd_kernel[grid]( | |
x, | |
weight, | |
bias, | |
y, | |
dy, | |
dx, | |
_dw, | |
_db, | |
dresidual, | |
weight1, | |
dy1, | |
dx1, | |
_dw1, | |
_db1, | |
dresidual_in, | |
rowscale, | |
seeds, | |
mean, | |
rstd, | |
x.stride(0), | |
0 if not recompute_output else y.stride(0), | |
dy.stride(0), | |
dx.stride(0), | |
dresidual.stride(0) if dresidual is not None else 0, | |
dy1.stride(0) if dy1 is not None else 0, | |
dx1.stride(0) if dx1 is not None else 0, | |
dresidual_in.stride(0) if dresidual_in is not None else 0, | |
M, | |
N, | |
eps, | |
dropout_p, | |
rows_per_program, | |
is_rms_norm, | |
BLOCK_N, | |
dresidual is not None, | |
dresidual_in is not None, | |
bias is not None, | |
dropout_p > 0.0, | |
) | |
dw = _dw.sum(0).to(weight.dtype) | |
db = _db.sum(0).to(bias.dtype) if bias is not None else None | |
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None | |
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None | |
# Don't need to compute dresidual_in separately in this case | |
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None: | |
dresidual_in = dx | |
if has_x1 and dropout_p == 0.0: | |
dx1 = dx | |
return ( | |
(dx, dw, db, dresidual_in, dx1, dw1, db1) | |
if not recompute_output | |
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y) | |
) | |
class LayerNormFn(torch.autograd.Function): | |
def forward( | |
ctx, | |
x, | |
weight, | |
bias, | |
residual=None, | |
x1=None, | |
weight1=None, | |
bias1=None, | |
eps=1e-6, | |
dropout_p=0.0, | |
rowscale=None, | |
prenorm=False, | |
residual_in_fp32=False, | |
is_rms_norm=False, | |
return_dropout_mask=False, | |
): | |
x_shape_og = x.shape | |
# reshape input data into 2D tensor | |
x = x.reshape(-1, x.shape[-1]) | |
if x.stride(-1) != 1: | |
x = x.contiguous() | |
if residual is not None: | |
assert residual.shape == x_shape_og | |
residual = residual.reshape(-1, residual.shape[-1]) | |
if residual.stride(-1) != 1: | |
residual = residual.contiguous() | |
if x1 is not None: | |
assert x1.shape == x_shape_og | |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm" | |
x1 = x1.reshape(-1, x1.shape[-1]) | |
if x1.stride(-1) != 1: | |
x1 = x1.contiguous() | |
weight = weight.contiguous() | |
if bias is not None: | |
bias = bias.contiguous() | |
if weight1 is not None: | |
weight1 = weight1.contiguous() | |
if bias1 is not None: | |
bias1 = bias1.contiguous() | |
if rowscale is not None: | |
rowscale = rowscale.reshape(-1).contiguous() | |
residual_dtype = ( | |
residual.dtype | |
if residual is not None | |
else (torch.float32 if residual_in_fp32 else None) | |
) | |
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( | |
x, | |
weight, | |
bias, | |
eps, | |
residual, | |
x1, | |
weight1, | |
bias1, | |
dropout_p=dropout_p, | |
rowscale=rowscale, | |
residual_dtype=residual_dtype, | |
is_rms_norm=is_rms_norm, | |
return_dropout_mask=return_dropout_mask, | |
) | |
ctx.save_for_backward( | |
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd | |
) | |
ctx.x_shape_og = x_shape_og | |
ctx.eps = eps | |
ctx.dropout_p = dropout_p | |
ctx.is_rms_norm = is_rms_norm | |
ctx.has_residual = residual is not None | |
ctx.has_x1 = x1 is not None | |
ctx.prenorm = prenorm | |
ctx.x_dtype = x.dtype | |
y = y.reshape(x_shape_og) | |
y1 = y1.reshape(x_shape_og) if y1 is not None else None | |
residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None | |
dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None | |
dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None | |
if not return_dropout_mask: | |
if weight1 is None: | |
return y if not prenorm else (y, residual_out) | |
else: | |
return (y, y1) if not prenorm else (y, y1, residual_out) | |
else: | |
if weight1 is None: | |
return ( | |
(y, dropout_mask, dropout_mask1) | |
if not prenorm | |
else (y, residual_out, dropout_mask, dropout_mask1) | |
) | |
else: | |
return ( | |
(y, y1, dropout_mask, dropout_mask1) | |
if not prenorm | |
else (y, y1, residual_out, dropout_mask, dropout_mask1) | |
) | |
def backward(ctx, dy, *args): | |
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors | |
dy = dy.reshape(-1, dy.shape[-1]) | |
if dy.stride(-1) != 1: | |
dy = dy.contiguous() | |
assert dy.shape == x.shape | |
if weight1 is not None: | |
dy1, args = args[0], args[1:] | |
dy1 = dy1.reshape(-1, dy1.shape[-1]) | |
if dy1.stride(-1) != 1: | |
dy1 = dy1.contiguous() | |
assert dy1.shape == x.shape | |
else: | |
dy1 = None | |
if ctx.prenorm: | |
dresidual = args[0] | |
dresidual = dresidual.reshape(-1, dresidual.shape[-1]) | |
if dresidual.stride(-1) != 1: | |
dresidual = dresidual.contiguous() | |
assert dresidual.shape == x.shape | |
else: | |
dresidual = None | |
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd( | |
dy, | |
x, | |
weight, | |
bias, | |
ctx.eps, | |
mean, | |
rstd, | |
dresidual, | |
dy1, | |
weight1, | |
bias1, | |
seeds, | |
ctx.dropout_p, | |
rowscale, | |
ctx.has_residual, | |
ctx.has_x1, | |
ctx.is_rms_norm, | |
x_dtype=ctx.x_dtype, | |
) | |
return ( | |
dx.reshape(ctx.x_shape_og), | |
dw, | |
db, | |
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, | |
dx1.reshape(ctx.x_shape_og) if dx1 is not None else None, | |
dw1, | |
db1, | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
) | |
def layer_norm_fn( | |
x, | |
weight, | |
bias, | |
residual=None, | |
x1=None, | |
weight1=None, | |
bias1=None, | |
eps=1e-6, | |
dropout_p=0.0, | |
rowscale=None, | |
prenorm=False, | |
residual_in_fp32=False, | |
is_rms_norm=False, | |
return_dropout_mask=False, | |
): | |
return LayerNormFn.apply( | |
x, | |
weight, | |
bias, | |
residual, | |
x1, | |
weight1, | |
bias1, | |
eps, | |
dropout_p, | |
rowscale, | |
prenorm, | |
residual_in_fp32, | |
is_rms_norm, | |
return_dropout_mask, | |
) | |
def rms_norm_fn( | |
x, | |
weight, | |
bias, | |
residual=None, | |
x1=None, | |
weight1=None, | |
bias1=None, | |
eps=1e-6, | |
dropout_p=0.0, | |
rowscale=None, | |
prenorm=False, | |
residual_in_fp32=False, | |
return_dropout_mask=False, | |
): | |
return LayerNormFn.apply( | |
x, | |
weight, | |
bias, | |
residual, | |
x1, | |
weight1, | |
bias1, | |
eps, | |
dropout_p, | |
rowscale, | |
prenorm, | |
residual_in_fp32, | |
True, | |
return_dropout_mask, | |
) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, device=None, dtype=None): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.eps = eps | |
if dropout_p > 0.0: | |
self.drop = torch.nn.Dropout(dropout_p) | |
else: | |
self.drop = None | |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) | |
self.register_parameter("bias", None) | |
self.reset_parameters() | |
def reset_parameters(self): | |
torch.nn.init.ones_(self.weight) | |
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False): | |
return rms_norm_fn( | |
x, | |
self.weight, | |
self.bias, | |
residual=residual, | |
eps=self.eps, | |
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0, | |
prenorm=prenorm, | |
residual_in_fp32=residual_in_fp32, | |
) | |
class LayerNormLinearFn(torch.autograd.Function): | |
def forward( | |
ctx, | |
x, | |
norm_weight, | |
norm_bias, | |
linear_weight, | |
linear_bias, | |
residual=None, | |
eps=1e-6, | |
prenorm=False, | |
residual_in_fp32=False, | |
is_rms_norm=False, | |
): | |
x_shape_og = x.shape | |
# reshape input data into 2D tensor | |
x = x.reshape(-1, x.shape[-1]) | |
if x.stride(-1) != 1: | |
x = x.contiguous() | |
if residual is not None: | |
assert residual.shape == x_shape_og | |
residual = residual.reshape(-1, residual.shape[-1]) | |
if residual.stride(-1) != 1: | |
residual = residual.contiguous() | |
norm_weight = norm_weight.contiguous() | |
if norm_bias is not None: | |
norm_bias = norm_bias.contiguous() | |
residual_dtype = ( | |
residual.dtype | |
if residual is not None | |
else (torch.float32 if residual_in_fp32 else None) | |
) | |
y, _, mean, rstd, residual_out, *rest = _layer_norm_fwd( | |
x, | |
norm_weight, | |
norm_bias, | |
eps, | |
residual, | |
out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(), | |
residual_dtype=residual_dtype, | |
is_rms_norm=is_rms_norm, | |
) | |
y = y.reshape(x_shape_og) | |
dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype | |
linear_weight = linear_weight.to(dtype) | |
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None | |
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias) | |
# We don't store y, will be recomputed in the backward pass to save memory | |
ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd) | |
ctx.x_shape_og = x_shape_og | |
ctx.eps = eps | |
ctx.is_rms_norm = is_rms_norm | |
ctx.has_residual = residual is not None | |
ctx.prenorm = prenorm | |
ctx.x_dtype = x.dtype | |
ctx.linear_bias_is_none = linear_bias is None | |
return out if not prenorm else (out, residual_out.reshape(x_shape_og)) | |
def backward(ctx, dout, *args): | |
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors | |
dout = dout.reshape(-1, dout.shape[-1]) | |
dy = F.linear(dout, linear_weight.t()) | |
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0) | |
if dy.stride(-1) != 1: | |
dy = dy.contiguous() | |
assert dy.shape == x.shape | |
if ctx.prenorm: | |
dresidual = args[0] | |
dresidual = dresidual.reshape(-1, dresidual.shape[-1]) | |
if dresidual.stride(-1) != 1: | |
dresidual = dresidual.contiguous() | |
assert dresidual.shape == x.shape | |
else: | |
dresidual = None | |
dx, dnorm_weight, dnorm_bias, dresidual_in, _, _, _, y = _layer_norm_bwd( | |
dy, | |
x, | |
norm_weight, | |
norm_bias, | |
ctx.eps, | |
mean, | |
rstd, | |
dresidual=dresidual, | |
has_residual=ctx.has_residual, | |
is_rms_norm=ctx.is_rms_norm, | |
x_dtype=ctx.x_dtype, | |
recompute_output=True, | |
) | |
dlinear_weight = torch.einsum("bo,bi->oi", dout, y) | |
return ( | |
dx.reshape(ctx.x_shape_og), | |
dnorm_weight, | |
dnorm_bias, | |
dlinear_weight, | |
dlinear_bias, | |
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, | |
None, | |
None, | |
None, | |
None, | |
) | |
def layer_norm_linear_fn( | |
x, | |
norm_weight, | |
norm_bias, | |
linear_weight, | |
linear_bias, | |
residual=None, | |
eps=1e-6, | |
prenorm=False, | |
residual_in_fp32=False, | |
is_rms_norm=False, | |
): | |
return LayerNormLinearFn.apply( | |
x, | |
norm_weight, | |
norm_bias, | |
linear_weight, | |
linear_bias, | |
residual, | |
eps, | |
prenorm, | |
residual_in_fp32, | |
is_rms_norm, | |
) | |