Spaces:
Sleeping
Sleeping
# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared | |
# to naive implementation. | |
import fused_dense_lib as fused_dense_cuda | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd | |
from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act | |
class FusedDenseSqreluDenseFunc(torch.autograd.Function): | |
def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0): | |
"""checkpoint_lvl: | |
0: no recomputation in the bwd | |
1: recompute gelu_out in the bwd | |
2: recompute act_input and gelu_out in the bwd | |
""" | |
if torch.is_autocast_enabled(): | |
dtype = torch.get_autocast_gpu_dtype() | |
x, weight1, bias1, weight2, bias2 = [ | |
a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2] | |
] | |
is_bf16 = x.dtype == torch.bfloat16 | |
assert checkpoint_lvl in [0, 1, 2] | |
x = x.contiguous() | |
weight1 = weight1.contiguous() | |
bias1 = bias1.contiguous() | |
weight2 = weight2.contiguous() | |
bias2 = bias2.contiguous() | |
batch_shape, n = x.shape[:-1], x.shape[-1] | |
batch_dim = batch_shape.numel() | |
if is_bf16: | |
act_input = fused_dense_cuda.linear_bias_forward( | |
x.reshape(batch_dim, n), weight1, bias1 | |
) | |
output1 = sqrelu_fwd(act_input) | |
else: | |
save_act_input = checkpoint_lvl != 2 | |
result = triton_linear_act( | |
x.reshape(batch_dim, n), | |
weight1, | |
bias1, | |
activation="squared_relu", | |
save_act_input=save_act_input, | |
) | |
if save_act_input: | |
output1, act_input = result | |
else: | |
output1 = result | |
output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) | |
ctx.checkpoint_lvl = checkpoint_lvl | |
if checkpoint_lvl == 0: | |
ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1) | |
elif checkpoint_lvl == 1: | |
ctx.save_for_backward(x, weight1, bias1, weight2, act_input) | |
elif checkpoint_lvl == 2: | |
ctx.save_for_backward(x, weight1, bias1, weight2) | |
return output2.reshape(*batch_shape, output2.shape[-1]) | |
def backward(ctx, grad_output): | |
grad_output = grad_output.contiguous() | |
checkpoint_lvl = ctx.checkpoint_lvl | |
x, weight1, bias1, weight2, *rest = ctx.saved_tensors | |
batch_shape, n = x.shape[:-1], x.shape[-1] | |
batch_dim = batch_shape.numel() | |
is_bf16 = x.dtype == torch.bfloat16 | |
if checkpoint_lvl == 0: | |
act_input, output1 = rest | |
elif checkpoint_lvl == 1: | |
(act_input,) = rest | |
output1 = sqrelu_fwd(act_input) | |
elif checkpoint_lvl == 2: | |
if is_bf16: | |
act_input = fused_dense_cuda.linear_bias_forward( | |
x.reshape(batch_dim, n), weight1, bias1 | |
) | |
output1 = sqrelu_fwd(act_input) | |
else: | |
output1, act_input = triton_linear_act( | |
x.reshape(batch_dim, n), | |
weight1, | |
bias1, | |
activation="squared_relu", | |
save_act_input=True, | |
) | |
if is_bf16: | |
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) | |
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) | |
grad_output1 = grad_output @ weight2 | |
grad_act_input = sqrelu_bwd(grad_output1, act_input) | |
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( | |
x.reshape(batch_dim, n), weight1, grad_act_input | |
) | |
else: | |
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) | |
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) | |
grad_act_input = triton_dgrad_act( | |
grad_output, weight2, activation="squared_relu", act_input=act_input | |
) | |
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( | |
x.reshape(batch_dim, n), weight1, grad_act_input | |
) | |
return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None | |
fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply | |
class FusedDenseSqreluDense(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
bias1=True, | |
bias2=True, | |
checkpoint_lvl=0, | |
device=None, | |
dtype=None, | |
): | |
""" | |
checkpoint_lvl (increasing lvl means slower but more memory saving): | |
0: no recomputation in the bwd | |
1: recompute gelu_out in the bwd | |
2: recompute gelu_in and gelu_out in the bwd | |
""" | |
assert checkpoint_lvl in [0, 1, 2] | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features * 4 | |
assert bias1 == True, "DenseSqreluDense module without bias is currently not supported" | |
assert bias2 == True, "DenseSqreluDense module without bias is currently not supported" | |
self.checkpoint_lvl = checkpoint_lvl | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) | |
def forward(self, x): | |
assert x.is_cuda | |
return fused_dense_sqrelu_dense_function( | |
x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl | |
) | |