Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared
# to naive implementation.
import fused_dense_lib as fused_dense_cuda
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd
from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act
class FusedDenseSqreluDenseFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0):
"""checkpoint_lvl:
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute act_input and gelu_out in the bwd
"""
if torch.is_autocast_enabled():
dtype = torch.get_autocast_gpu_dtype()
x, weight1, bias1, weight2, bias2 = [
a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]
]
is_bf16 = x.dtype == torch.bfloat16
assert checkpoint_lvl in [0, 1, 2]
x = x.contiguous()
weight1 = weight1.contiguous()
bias1 = bias1.contiguous()
weight2 = weight2.contiguous()
bias2 = bias2.contiguous()
batch_shape, n = x.shape[:-1], x.shape[-1]
batch_dim = batch_shape.numel()
if is_bf16:
act_input = fused_dense_cuda.linear_bias_forward(
x.reshape(batch_dim, n), weight1, bias1
)
output1 = sqrelu_fwd(act_input)
else:
save_act_input = checkpoint_lvl != 2
result = triton_linear_act(
x.reshape(batch_dim, n),
weight1,
bias1,
activation="squared_relu",
save_act_input=save_act_input,
)
if save_act_input:
output1, act_input = result
else:
output1 = result
output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2)
ctx.checkpoint_lvl = checkpoint_lvl
if checkpoint_lvl == 0:
ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1)
elif checkpoint_lvl == 1:
ctx.save_for_backward(x, weight1, bias1, weight2, act_input)
elif checkpoint_lvl == 2:
ctx.save_for_backward(x, weight1, bias1, weight2)
return output2.reshape(*batch_shape, output2.shape[-1])
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
grad_output = grad_output.contiguous()
checkpoint_lvl = ctx.checkpoint_lvl
x, weight1, bias1, weight2, *rest = ctx.saved_tensors
batch_shape, n = x.shape[:-1], x.shape[-1]
batch_dim = batch_shape.numel()
is_bf16 = x.dtype == torch.bfloat16
if checkpoint_lvl == 0:
act_input, output1 = rest
elif checkpoint_lvl == 1:
(act_input,) = rest
output1 = sqrelu_fwd(act_input)
elif checkpoint_lvl == 2:
if is_bf16:
act_input = fused_dense_cuda.linear_bias_forward(
x.reshape(batch_dim, n), weight1, bias1
)
output1 = sqrelu_fwd(act_input)
else:
output1, act_input = triton_linear_act(
x.reshape(batch_dim, n),
weight1,
bias1,
activation="squared_relu",
save_act_input=True,
)
if is_bf16:
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
grad_output1 = grad_output @ weight2
grad_act_input = sqrelu_bwd(grad_output1, act_input)
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
x.reshape(batch_dim, n), weight1, grad_act_input
)
else:
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
grad_act_input = triton_dgrad_act(
grad_output, weight2, activation="squared_relu", act_input=act_input
)
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
x.reshape(batch_dim, n), weight1, grad_act_input
)
return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None
fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply
class FusedDenseSqreluDense(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
bias1=True,
bias2=True,
checkpoint_lvl=0,
device=None,
dtype=None,
):
"""
checkpoint_lvl (increasing lvl means slower but more memory saving):
0: no recomputation in the bwd
1: recompute gelu_out in the bwd
2: recompute gelu_in and gelu_out in the bwd
"""
assert checkpoint_lvl in [0, 1, 2]
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features * 4
assert bias1 == True, "DenseSqreluDense module without bias is currently not supported"
assert bias2 == True, "DenseSqreluDense module without bias is currently not supported"
self.checkpoint_lvl = checkpoint_lvl
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
def forward(self, x):
assert x.is_cuda
return fused_dense_sqrelu_dense_function(
x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl
)