Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import time | |
import torch | |
import pytest | |
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM | |
from flash_attn.models.gpt import GPTLMHeadModel | |
from flash_attn.models.btlm import btlm_config_to_gpt2_config, remap_state_dict_hf_btlm | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
from flash_attn.utils.generation import update_graph_cache | |
def test_btlm_state_dict(model_name): | |
config = btlm_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config) | |
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow | |
state_dict = model.state_dict() | |
assert len(state_dict.keys()) == len(pretrained_state_dict.keys()) | |
assert state_dict.keys() == pretrained_state_dict.keys() | |
for k in state_dict.keys(): | |
assert state_dict[k].shape == pretrained_state_dict[k].shape | |
def test_btlm_optimized(model_name): | |
"""Check that our implementation of Btlm (with all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
device = "cuda" | |
config = btlm_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
config.fused_bias_fc = True | |
config.fused_dropout_add_ln = True | |
config.residual_in_fp32 = True | |
pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config) | |
model = GPTLMHeadModel(config, device=device, dtype=dtype) | |
model.load_state_dict(pretrained_state_dict) | |
model.eval() | |
torch.manual_seed(0) | |
batch_size = 2 | |
max_seqlen = 256 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device | |
) | |
with torch.no_grad(): | |
out = model.transformer(input_ids) | |
logits = model(input_ids).logits | |
del model | |
# Without device_map, the model is loaded on the CPU, which is very slow | |
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB | |
model_ref = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map="auto", trust_remote_code=True | |
) | |
model_ref.eval() | |
with torch.no_grad(): | |
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device) | |
logits_ref = model_ref(input_ids).logits.to(device=device) | |
del model_ref | |
model_hf = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=dtype, | |
device_map={"": device}, | |
trust_remote_code=True, | |
) | |
model_hf.eval() | |
with torch.no_grad(): | |
out_hf = model_hf.transformer(input_ids).last_hidden_state | |
logits_hf = model_hf(input_ids).logits | |
del model_hf | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") | |
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") | |
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") | |
assert (logits - logits_ref).abs().max().item() < 3 * ( | |
logits_hf - logits_ref | |
).abs().max().item() | |
def test_btlm_generation(model_name): | |
dtype = torch.float16 | |
device = "cuda" | |
config = btlm_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
config.fused_bias_fc = True | |
config.fused_dropout_add_ln = True | |
config.residual_in_fp32 = True | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
eos_token_id = tokenizer.eos_token_id | |
torch.manual_seed(0) | |
batch_size = 1 | |
seqlen = 2048 | |
max_length = 2048 + 150 | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device | |
) | |
model_hf = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True | |
) | |
model_hf.eval() | |
print("HF fp16") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_hf = model_hf.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
return_dict_in_generate=True, | |
output_scores=True, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
del model_hf | |
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB | |
model_ref = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map="auto", trust_remote_code=True | |
) | |
model_ref.eval() | |
with torch.no_grad(): | |
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device) | |
del model_ref | |
pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config) | |
model = GPTLMHeadModel(config, device=device, dtype=dtype) | |
model.load_state_dict(pretrained_state_dict) | |
model.eval() | |
model(input_ids) # Warm up | |
print("Without CUDA graph") | |
torch.cuda.synchronize() | |
start = time.time() | |
out = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
eos_token_id=eos_token_id, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
teacher_outputs=out_hf.sequences, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
# Capture graph outside the timing loop | |
batch_size, seqlen_og = input_ids.shape | |
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) | |
print("With CUDA graph") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_cg = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
cg=True, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
teacher_outputs=out_hf.sequences, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
with torch.no_grad(): | |
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1] | |
logits_hf = torch.stack(out_hf.scores, dim=1) | |
logits = torch.stack(out.scores, dim=1) | |
logits_cg = torch.stack(out_cg.scores, dim=1) | |
del model | |
hf_error = (logits_hf - logits_ref).abs().max().item() | |
print(f"HF fp16 logits max diff: {hf_error}") | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }") | |
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }") | |
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error | |
assert (logits - logits_ref).abs().max().item() < 2 * hf_error | |
assert torch.equal(logits_cg, logits) | |
def test_btlm_init(model_name): | |
dtype = torch.float32 | |
device = "cuda" | |
btlm_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
config = btlm_config_to_gpt2_config(btlm_config) | |
model = GPTLMHeadModel(config, device=device, dtype=dtype) | |
model_ref = AutoModelForCausalLM.from_config(btlm_config, trust_remote_code=True).to(device) | |
assert model.transformer.embeddings.word_embeddings.weight.mean().abs() < 1e-4 | |
assert ( | |
model.transformer.embeddings.word_embeddings.weight.std() | |
- model_ref.transformer.wte.weight.std() | |
).abs() < 1e-4 | |
assert model.lm_head.weight.mean().abs() < 1e-4 | |
assert (model.lm_head.weight.std() - model_ref.lm_head.weight.std()).abs() < 1e-4 | |
for l in range(config.n_layer): | |
assert model.transformer.layers[l].mixer.Wqkv.weight.mean().abs() < 1e-4 | |
assert ( | |
model.transformer.layers[l].mixer.Wqkv.weight.std() | |
- model_ref.transformer.h[l].attn.c_attn.weight.std() | |
).abs() < 1e-4 | |
assert model.transformer.layers[l].mixer.Wqkv.bias.abs().max() == 0.0 | |
assert model.transformer.layers[l].mixer.out_proj.weight.mean().abs() < 1e-4 | |
assert ( | |
model.transformer.layers[l].mixer.out_proj.weight.std() | |
- model_ref.transformer.h[l].attn.c_proj.weight.std() | |
).abs() < 1e-4 | |
assert model.transformer.layers[l].mixer.out_proj.bias.abs().max() == 0.0 | |
assert model.transformer.layers[l].mlp.fc1.weight.mean().abs() < 1e-4 | |
assert ( | |
model.transformer.layers[l].mlp.fc1.weight.std() | |
- model_ref.transformer.h[l].mlp.c_fc.weight.std() | |
).abs() < 1e-4 | |
assert model.transformer.layers[l].mlp.fc1.bias.abs().max() == 0.0 | |
assert model.transformer.layers[l].mlp.fc2.weight.mean().abs() < 1e-4 | |
assert ( | |
model.transformer.layers[l].mlp.fc2.weight.std() | |
- model_ref.transformer.h[l].mlp.c_proj.weight.std() | |
).abs() < 1e-4 | |
assert model.transformer.layers[l].mlp.fc2.bias.abs().max() == 0.0 | |