Factory-POC / flash-attention /tests /models /test_gpt_generation_parallel.py
Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_generation_parallel.py -k "parallel"
import os
import re
import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import GPTLMHeadModel, remap_state_dict_hf_gpt2
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import GPT2Config, GPT2Tokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF
# @pytest.mark.parametrize('world_size', [1, 2, 4, 8])
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize('rotary', [False, True])
# @pytest.mark.parametrize("rotary", [False])
@pytest.mark.parametrize("model_name", ["gpt2"])
def test_tensor_parallel(model_name, rotary, world_size):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
dtype = torch.float16
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
if rotary:
config.n_positions = 0
config.rotary_emb_dim = 64
config.residual_in_fp32 = True
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
from apex.transformer import parallel_state
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
# if not rotary, we load the weight from HF but ignore the position embeddings.
# The model would be nonsense but it doesn't matter for the test.
model = GPTLMHeadModel.from_pretrained(
model_name,
config,
strict=not rotary,
device=device,
dtype=dtype,
process_group=process_group,
world_size=world_size,
rank=rank,
)
model.eval()
if not rotary:
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device)
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype)
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_ids = tokenizer("Hello, my dog is cute and ", return_tensors="pt").input_ids.to(
device=device
)
max_length = 30
# input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
# Slow generation for reference
sequences = []
scores = []
cur_input_ids = input_ids
with torch.inference_mode():
logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group)
logits = rearrange(logits, "(n b) d -> b (n d)", b=input_ids.shape[0])[
..., : config.vocab_size
]
scores.append(logits)
sequences.append(scores[-1].argmax(dim=-1))
for _ in range(input_ids.shape[1] + 1, max_length):
cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1)
logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group)
logits = rearrange(logits, "(n b) d -> b (n d)", b=input_ids.shape[0])[
..., : config.vocab_size
]
scores.append(logits)
sequences.append(scores[-1].argmax(dim=-1))
sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1)
scores = tuple(scores)
print(sequences)
out = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
print(out.sequences)
if getattr(config, "use_flash_attn", False):
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
print(out_cg.sequences)
parallel_state.destroy_model_parallel()
if not rotary:
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
out_ref = model_ref.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
print(
f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}"
)
print(
f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}"
)
print(
f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}"
)
print(
f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}"
)
assert torch.all(out.sequences == sequences)
assert torch.allclose(
torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol
)
assert torch.equal(torch.stack(out.scores, dim=1), torch.stack(out_cg.scores, dim=1))
if not rotary:
assert torch.all(out.sequences == out_ref.sequences)
assert torch.all(out.sequences == out_hf.sequences)
assert (
torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)
).abs().max().item() < 3 * (
torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)
).abs().max().item()