Spaces:
Sleeping
Sleeping
# Run test with: | |
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_generation_parallel.py -k "parallel" | |
import os | |
import re | |
import pytest | |
import torch | |
from einops import rearrange | |
from flash_attn.models.gpt import GPTLMHeadModel, remap_state_dict_hf_gpt2 | |
from flash_attn.utils.distributed import all_gather_raw | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
from transformers import GPT2Config, GPT2Tokenizer | |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF | |
# @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) | |
# @pytest.mark.parametrize("rotary", [False]) | |
def test_tensor_parallel(model_name, rotary, world_size): | |
"""Check that our implementation of GPT2 generation matches the HF implementation: | |
the scores in fp16 should be around the same as the HF scores in fp16, when compared to | |
the HF scores in fp32. | |
""" | |
dtype = torch.float16 | |
rtol, atol = 3e-3, 3e-1 | |
config = GPT2Config.from_pretrained(model_name) | |
if rotary: | |
config.n_positions = 0 | |
config.rotary_emb_dim = 64 | |
config.residual_in_fp32 = True | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = True | |
config.fused_dropout_add_ln = True | |
config.pad_vocab_size_multiple = 8 * world_size | |
config.sequence_parallel = False # Need to set this to False for generation | |
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0" | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both | |
# GPU0 and GPU1 and things would hang | |
torch.cuda.set_device(device) | |
from apex.transformer import parallel_state | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
process_group = parallel_state.get_tensor_model_parallel_group() | |
# if not rotary, we load the weight from HF but ignore the position embeddings. | |
# The model would be nonsense but it doesn't matter for the test. | |
model = GPTLMHeadModel.from_pretrained( | |
model_name, | |
config, | |
strict=not rotary, | |
device=device, | |
dtype=dtype, | |
process_group=process_group, | |
world_size=world_size, | |
rank=rank, | |
) | |
model.eval() | |
if not rotary: | |
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device) | |
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype) | |
model_ref.eval() | |
model_hf.eval() | |
torch.manual_seed(0) | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
input_ids = tokenizer("Hello, my dog is cute and ", return_tensors="pt").input_ids.to( | |
device=device | |
) | |
max_length = 30 | |
# input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda') | |
# max_length = input_ids.shape[1] + 40 | |
# Slow generation for reference | |
sequences = [] | |
scores = [] | |
cur_input_ids = input_ids | |
with torch.inference_mode(): | |
logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group) | |
logits = rearrange(logits, "(n b) d -> b (n d)", b=input_ids.shape[0])[ | |
..., : config.vocab_size | |
] | |
scores.append(logits) | |
sequences.append(scores[-1].argmax(dim=-1)) | |
for _ in range(input_ids.shape[1] + 1, max_length): | |
cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1) | |
logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group) | |
logits = rearrange(logits, "(n b) d -> b (n d)", b=input_ids.shape[0])[ | |
..., : config.vocab_size | |
] | |
scores.append(logits) | |
sequences.append(scores[-1].argmax(dim=-1)) | |
sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) | |
scores = tuple(scores) | |
print(sequences) | |
out = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
tensor_parallel=world_size, | |
vocab_size=config.vocab_size, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
) | |
print(out.sequences) | |
if getattr(config, "use_flash_attn", False): | |
out_cg = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
tensor_parallel=world_size, | |
vocab_size=config.vocab_size, | |
cg=True, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
) | |
print(out_cg.sequences) | |
parallel_state.destroy_model_parallel() | |
if not rotary: | |
out_hf = model_hf.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
return_dict_in_generate=True, | |
output_scores=True, | |
) | |
out_ref = model_ref.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
return_dict_in_generate=True, | |
output_scores=True, | |
) | |
print( | |
f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" | |
) | |
print( | |
f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" | |
) | |
print( | |
f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" | |
) | |
print( | |
f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" | |
) | |
assert torch.all(out.sequences == sequences) | |
assert torch.allclose( | |
torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol | |
) | |
assert torch.equal(torch.stack(out.scores, dim=1), torch.stack(out_cg.scores, dim=1)) | |
if not rotary: | |
assert torch.all(out.sequences == out_ref.sequences) | |
assert torch.all(out.sequences == out_hf.sequences) | |
assert ( | |
torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1) | |
).abs().max().item() < 3 * ( | |
torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1) | |
).abs().max().item() | |