Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2023, Tri Dao.
# To run the huggingface implementation of LLaMa (1), we first need to convert the weights:
# https://github.com/huggingface/transformers/pull/21955
# python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR/llama/7B-hf
# and repeat for 13B, 30B, 65B
import os
import time
from pathlib import Path
current_dir = Path(__file__).parent.absolute()
import shutil
import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
from flash_attn.models.llama import (
config_from_checkpoint,
inv_remap_state_dict_hf_llama,
llama_config_to_gpt2_config,
remap_state_dict_hf_llama,
remap_state_dict_meta_llama,
state_dicts_from_checkpoint,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.generation import update_graph_cache
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import LlamaConfig, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from transformers import AutoConfig
def _pretrained_state_dict_from_checkpoint(checkpoint_path, model_name, config, checkpoint_format):
if checkpoint_format == "meta":
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
else:
pretrained_state_dict = state_dict_from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf"
)
pretrained_state_dict = remap_state_dict_hf_llama(pretrained_state_dict, config)
return pretrained_state_dict
@pytest.mark.parametrize("model_name", ["7B"])
def test_llama_state_dict(model_name):
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
# TinyLlama-1.1B is to test MQA
@pytest.mark.parametrize(
"model_name", ["meta-llama/Llama-2-7b-hf", "PY007/TinyLlama-1.1B-step-50K-105b"]
)
def test_inv_remap_state_dict_hf_llama(model_name):
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
state_dict = state_dict_from_pretrained(model_name)
# inv_remap_state_dict_hf_llama should be the inverse of remap_state_dict_hf_llama
state_dict = {key: val for key, val in state_dict.items() if "rotary_emb.inv_freq" not in key}
pretrained_state_dict = remap_state_dict_hf_llama(state_dict, config)
state_dict_recover = inv_remap_state_dict_hf_llama(pretrained_state_dict, config)
assert set(state_dict_recover.keys()) == set(state_dict.keys())
for key in state_dict_recover.keys():
torch.testing.assert_close(state_dict_recover[key], state_dict[key])
# TinyLlama-1.1B is to test MQA
@pytest.mark.parametrize(
"model_name",
[
"7B", # Llama 1
"13B", # Llama 1
"meta-llama/Llama-2-13b-hf",
"codellama/CodeLlama-7b-hf",
"codellama/CodeLlama-13b-hf",
"codellama/CodeLlama-34b-hf",
"PY007/TinyLlama-1.1B-step-50K-105b",
],
)
def test_llama_optimized(model_name):
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
device = "cuda"
if "/" in model_name: # Download from HF
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
else:
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
if "/" in model_name: # Download from HF
pretrained_state_dict = remap_state_dict_hf_llama(
state_dict_from_pretrained(model_name), config
)
else:
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="meta"
)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Without device_map, the model is loaded on the CPU, which is very slow
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
device_map="auto",
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
torch_dtype=dtype,
device_map={"": device},
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(
"model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]
)
def test_llama_parallel(model_name, world_size):
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
from apex.transformer import parallel_state
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
if "/" in model_name: # Download from HF
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
else:
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
if "/" in model_name: # Download from HF
pretrained_state_dict = remap_state_dict_hf_llama(
state_dict_from_pretrained(model_name), config
)
else:
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="meta"
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
del model
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
device_map="auto",
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
torch_dtype=dtype,
device_map="auto",
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
# @pytest.mark.parametrize('model_name', ["7B", "13B"])
@pytest.mark.parametrize("model_name", ["7B"])
@pytest.mark.parametrize("checkpoint_format", ["meta", "hf"])
def test_llama_generation(model_name, checkpoint_format):
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
device = "cuda"
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format)
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf")
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
model_hf = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", device_map="auto"
)
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
del model_ref
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format
)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
print("Without CUDA graph")
torch.cuda.synchronize()
start = time.time()
out = model.generate(
input_ids=input_ids,
max_length=max_length,
eos_token_id=eos_token_id,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
assert torch.equal(logits_cg, logits)
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(
"model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]
)
def test_llama_parallel_generation(model_name, world_size):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
from apex.transformer import parallel_state
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
if "/" in model_name: # Download from HF
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
else:
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
if "/" in model_name: # Download from HF
pretrained_state_dict = remap_state_dict_hf_llama(
state_dict_from_pretrained(model_name), config
)
else:
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="meta"
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
print("Without CUDA graph")
out = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
cg=True,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_hf = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
torch_dtype=dtype,
device_map="auto",
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
with torch.inference_mode():
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
model_ref = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
device_map="auto",
)
model_ref.eval()
with torch.inference_mode():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
del model_ref
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
assert torch.equal(logits_cg, logits)
@torch.no_grad()
@pytest.mark.parametrize("world_size", [2])
def test_llama_parallel_uneven_num_heads(world_size):
from apex.transformer import parallel_state
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
num_attention_heads = world_size + 1
model_name = f"teeny-{num_attention_heads}-heads"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
dtype = torch.float16
llama_config = LlamaConfig(
hidden_size=256
* num_attention_heads, # ParallelGatedMlp hidden_features must be divisible by 256
intermediate_size=256 * num_attention_heads * 4,
num_hidden_layers=4,
num_attention_heads=num_attention_heads,
initializer_range=0.5, # Set crazy init range so we don't have near zero weights implying a vacuous test.
)
config = llama_config_to_gpt2_config(llama_config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
# Create a shared test model.
if rank == 0:
LlamaForCausalLM(config=llama_config).save_pretrained(checkpoint_path / f"{model_name}-hf")
torch.distributed.barrier()
# Run the standard forward pass test.
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="hf"
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
# TODO: Avoid duplicate code. Modularize the comparison of two forward pass diffs.
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
if rank == 0:
model_ref = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", device_map={"": device}
)
model_ref = model_ref.to(device=device)
model_ref.eval()
out_ref = model_ref.model(input_ids).last_hidden_state
logits_ref = model_ref(input_ids).logits
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
)
model_hf.eval()
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
if os.path.exists(checkpoint_path / f"{model_name}-hf"):
shutil.rmtree(checkpoint_path / f"{model_name}-hf")