Spaces:
Sleeping
Sleeping
# Run test with: | |
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py | |
import math | |
from functools import partial | |
import pytest | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from apex.transformer import parallel_state, tensor_parallel | |
from einops import rearrange | |
from flash_attn.modules.block import Block | |
from flash_attn.modules.mha import MHA, ParallelMHA | |
from flash_attn.modules.mlp import FusedMLP, ParallelFusedMLP | |
from flash_attn.utils.distributed import allreduce_sequence_parallel_grad | |
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 | |
# @pytest.mark.parametrize('dtype', [torch.float16]) | |
# @pytest.mark.parametrize('world_size', [2]) | |
# @pytest.mark.parametrize('sequence_parallel', [True]) | |
def test_block_parallel(dim, sequence_parallel, world_size, dtype): | |
head_dim = 64 | |
assert dim % head_dim == 0 | |
num_heads = dim // head_dim | |
assert num_heads % world_size == 0 | |
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 2 | |
seqlen = 1024 | |
assert (batch_size * seqlen) % world_size == 0 | |
x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True) | |
residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True) | |
# We need to generate g here so that all processes get the same gradient, | |
# as rank 0 will have an extra bias that changes the RNG. | |
# If we don't divide by batch_size, the gradient gets a bit too large. | |
g = torch.randn_like(x_pt) / 32 | |
if sequence_parallel: | |
x = ( | |
tensor_parallel.scatter_to_sequence_parallel_region(x_pt) | |
.detach() | |
.clone() | |
.requires_grad_() | |
) | |
residual = ( | |
tensor_parallel.scatter_to_sequence_parallel_region(residual_pt) | |
.detach() | |
.clone() | |
.requires_grad_() | |
) | |
else: | |
x = x_pt.detach().clone().requires_grad_() | |
residual = residual_pt.detach().clone().requires_grad_() | |
mixer_cls_pt = partial( | |
MHA, | |
num_heads=num_heads, | |
rotary_emb_dim=int(head_dim // 2), | |
use_flash_attn=True, | |
device=device, | |
dtype=dtype, | |
) | |
mlp_cls_pt = partial(FusedMLP, hidden_features=4 * dim, device=device, dtype=dtype) | |
norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype) | |
model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True) | |
with torch.no_grad(): | |
nn.init.normal_(model_pt.norm1.weight) | |
nn.init.normal_(model_pt.norm1.bias) | |
nn.init.normal_(model_pt.norm2.weight) | |
nn.init.normal_(model_pt.norm2.bias) | |
mixer_cls = partial( | |
ParallelMHA, | |
num_heads=num_heads, | |
process_group=parallel_state.get_tensor_model_parallel_group(), | |
rotary_emb_dim=int(head_dim // 2), | |
use_flash_attn=True, | |
sequence_parallel=sequence_parallel, | |
device=device, | |
dtype=dtype, | |
) | |
mlp_cls = partial( | |
ParallelFusedMLP, | |
hidden_features=4 * dim, | |
process_group=parallel_state.get_tensor_model_parallel_group(), | |
sequence_parallel=sequence_parallel, | |
device=device, | |
dtype=dtype, | |
) | |
model = Block( | |
dim, | |
mixer_cls, | |
mlp_cls, | |
norm_cls, | |
fused_dropout_add_ln=True, | |
sequence_parallel=sequence_parallel, | |
mark_shared_params=True, | |
) | |
partition_dim = dim // world_size | |
partition_hidden_dim = 4 * dim // world_size | |
with torch.no_grad(): | |
model.mixer.Wqkv.weight.copy_( | |
rearrange( | |
rearrange(model_pt.mixer.Wqkv.weight, "(three o) i -> three o i", three=3)[ | |
:, rank * partition_dim : (rank + 1) * partition_dim | |
], | |
"three o i -> (three o) i", | |
) | |
) | |
model.mixer.Wqkv.bias.copy_( | |
rearrange( | |
rearrange(model_pt.mixer.Wqkv.bias, "(three o) -> three o", three=3)[ | |
:, rank * partition_dim : (rank + 1) * partition_dim | |
], | |
"three o -> (three o)", | |
) | |
) | |
model.mixer.out_proj.weight.copy_( | |
model_pt.mixer.out_proj.weight[:, rank * partition_dim : (rank + 1) * partition_dim] | |
) | |
if rank == 0: | |
model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias) | |
model.mlp.fc1.weight.copy_( | |
model_pt.mlp.fc1.weight[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim] | |
) | |
model.mlp.fc1.bias.copy_( | |
model_pt.mlp.fc1.bias[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim] | |
) | |
model.mlp.fc2.weight.copy_( | |
model_pt.mlp.fc2.weight[ | |
:, rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim | |
] | |
) | |
if rank == 0: | |
model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias) | |
model.norm1.weight.copy_(model_pt.norm1.weight) | |
model.norm1.bias.copy_(model_pt.norm1.bias) | |
model.norm2.weight.copy_(model_pt.norm2.weight) | |
model.norm2.bias.copy_(model_pt.norm2.bias) | |
mixer_kwargs = {"seqlen": seqlen} | |
out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs) | |
out_pt, out_residual_pt = model_pt( | |
rearrange(x_pt, "(b s) d -> b s d", s=seqlen), | |
rearrange(residual_pt, "(b s) d -> b s d", s=seqlen), | |
) | |
out_pt, out_residual_pt = [rearrange(x, "b s d -> (b s) d") for x in [out_pt, out_residual_pt]] | |
partition_batch_dim = batch_size * seqlen // world_size | |
assert torch.allclose( | |
out, | |
out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
if sequence_parallel | |
else out_pt, | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
out_residual, | |
out_residual_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
if sequence_parallel | |
else out_residual_pt, | |
rtol=rtol, | |
atol=atol, | |
) | |
(out_pt + 2 * out_residual_pt).backward(g) | |
(out + 2 * out_residual).backward( | |
g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g | |
) | |
allreduce_sequence_parallel_grad(model, parallel_state.get_tensor_model_parallel_group()) | |
parallel_state.destroy_model_parallel() | |
assert torch.allclose( | |
x.grad, | |
x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
if sequence_parallel | |
else x_pt.grad, | |
rtol=rtol, | |
atol=atol / 10, # magnitude of x.grad is quite small | |
) | |
assert torch.allclose( | |
residual.grad, | |
residual_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
if sequence_parallel | |
else residual_pt.grad, | |
rtol=rtol, | |
atol=atol, | |
) | |
# The error for d_weight and d_bias is quite a bit higher | |
assert torch.allclose( | |
model.mixer.Wqkv.weight.grad, | |
rearrange( | |
rearrange(model_pt.mixer.Wqkv.weight.grad, "(three o) i -> three o i", three=3)[ | |
:, rank * partition_dim : (rank + 1) * partition_dim | |
], | |
"three o i -> (three o) i", | |
), | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
assert torch.allclose( | |
model.mixer.Wqkv.bias.grad, | |
rearrange( | |
rearrange(model_pt.mixer.Wqkv.bias.grad, "(three o) -> three o", three=3)[ | |
:, rank * partition_dim : (rank + 1) * partition_dim | |
], | |
"three o -> (three o)", | |
), | |
rtol=rtol, | |
atol=atol * 5, | |
) | |
assert torch.allclose( | |
model.mixer.out_proj.weight.grad, | |
model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim : (rank + 1) * partition_dim], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
if rank == 0: | |
assert torch.allclose( | |
model.mixer.out_proj.bias.grad, | |
model_pt.mixer.out_proj.bias.grad, | |
rtol=rtol, | |
atol=atol * 5, | |
) | |
assert torch.allclose( | |
model.mlp.fc1.weight.grad, | |
model_pt.mlp.fc1.weight.grad[ | |
rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim | |
], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
assert torch.allclose( | |
model.mlp.fc1.bias.grad, | |
model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim], | |
rtol=rtol, | |
atol=atol * 5, | |
) | |
assert torch.allclose( | |
model.mlp.fc2.weight.grad, | |
model_pt.mlp.fc2.weight.grad[ | |
:, rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim | |
], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
if rank == 0: | |
assert torch.allclose( | |
model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad, rtol=rtol, atol=atol * 5 | |
) | |
assert torch.allclose( | |
model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5 | |
) | |
assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5) | |
assert torch.allclose( | |
model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5 | |
) | |
assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5) | |