LLaMa3-assistant / main.py
Do0rMaMu's picture
Update main.py
8ed9bc8 verified
raw
history blame
1.33 kB
from fastapi import FastAPI
from pydantic import BaseModel
# Assuming Llama class has been correctly imported and set up
from llama_cpp import Llama
# Model loading with specified path and configuration
llm = Llama(
model_path="Meta-Llama-3-8B-Instruct.Q4_K_M.gguf", # Update the path as necessary
n_ctx=4096, # Maximum number of tokens for context (input + output)
n_threads=4, # Number of CPU cores used
)
# Pydantic object for validation
class Validation(BaseModel):
user_prompt: str # User's input prompt
system_prompt: str # System's guiding prompt
# FastAPI application initialization
app = FastAPI()
# Endpoint for generating responses
@app.post("/generate_response")
async def generate_response(item: Validation):
# Construct the complete prompt using the given system and user prompts
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> \n
{ item.system_prompt }<|eot_id|> \n <|start_header_id|>user<|end_header_id|>
{ item.user_prompt }<|eot_id|> \n <|start_header_id|>assistant<|end_header_id|>"""
# Call the Llama model to generate a response
output = llm('Q: what is gravity? A:', max_tokens=1024, stop=["Q:", "\n"], echo=True) # Update parameters as needed
# Extract and return the text from the response
return output