phi3-sql / main.py
Do0rMaMu's picture
Update main.py
5cffeec verified
raw
history blame
1.19 kB
from fastapi import FastAPI
from pydantic import BaseModel
# Assuming Llama class has been correctly imported and set up
from llama_cpp import Llama
# Model loading with specified path and configuration
llm = Llama(
model_path="phi-3-mini-4k-instruct-text-to-sql.Q4_K.gguf", # Update the path as necessary
n_ctx=4096, # Maximum number of tokens for context (input + output)
n_threads=2, # Number of CPU cores used
)
# Pydantic object for validation
class Validation(BaseModel):
user_prompt: str
system_prompt: str
max_tokens: int = 1024
temperature: float = 0.01
# FastAPI application initialization
app = FastAPI()
# Endpoint for generating responses
@app.post("/generate_response")
async def generate_response(item: Validation):
# Construct the complete prompt using the given system and user prompts
prompt = f"""\nSystem\n
{ item.system_prompt } \nQuestion\n
{ item.user_prompt }"""
# Call the Llama model to generate a response
output = llm(prompt, max_tokens = item.max_tokens,temperature = item.temperature, echo=True)
# Extract and return the text from the response
return output['choices'][0]['text']