Doa-doa's picture
Upload folder using huggingface_hub
72268ee
from .base import BaseAWQForCausalLM
from transformers.models.bloom.modeling_bloom import BloomForCausalLM, BloomBlock
class BloomAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "BloomBlock"
@staticmethod
def get_model_layers(model: BloomForCausalLM):
return model.transformer.h
@staticmethod
def get_act_for_scaling(module: BloomBlock):
return dict(
is_scalable=True,
scale_name="mlp.gelu_impl",
scale_layer=module.mlp.gelu_impl,
scale_shape=module.mlp.dense_h_to_4h.out_features
)
@staticmethod
def move_embed(model: BloomForCausalLM, device: str):
model.transformer.word_embeddings = model.transformer.word_embeddings.to(device)
model.transformer.word_embeddings_layernorm = model.transformer.word_embeddings_layernorm.to(device)
@staticmethod
def get_layers_for_scaling(module: BloomBlock, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.input_layernorm,
layers=[module.self_attention.query_key_value],
inp=input_feat['self_attention.query_key_value'],
module2inspect=module, kwargs=module_kwargs,
))
# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/issues/2#issuecomment-1606297469
"""
scales_list.append(_auto_get_scale(
prev_op=module.self_attention.query_key_value,
layers=[module.self_attention.dense],
inp=input_feat['self_attention.dense'],
))
"""
# linear 1
layers.append(dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.dense_h_to_4h],
inp=input_feat['mlp.dense_h_to_4h'],
module2inspect=module, kwargs=module_kwargs,
))
# linear 2
layers.append(dict(
prev_op=module.mlp.gelu_impl,
layers=[module.mlp.dense_4h_to_h],
inp=input_feat['mlp.dense_4h_to_h'],
))
return layers