Doa-doa's picture
Upload folder using huggingface_hub
72268ee
import torch
class WindowedCache:
def __init__(self, cache_v_shape, cache_k_shape, device):
"""
The window size is the same as the max_new_tokens. The window will
automatically roll once max_new_tokens is exceeded.
"""
# [batch_size, n_kv_heads, max_seq_len, head_dim]
self.v = torch.zeros(cache_v_shape).to(device).half()
# [batch_size, n_kv_heads, head_dim // pack_factor, max_seq_len, pack_factor]
self.k = torch.zeros(cache_k_shape).to(device).half()
def get_kv(self, batch_size, start_pos, seqlen, head_dim):
xv = self.v[:batch_size, :, : start_pos + seqlen, :].transpose(1, 2).contiguous()
xk = self.k[:batch_size, :, :, : start_pos + seqlen, :].transpose(2, 3).contiguous()
xk = xk.reshape(xk.shape[:-2] + (head_dim,)).transpose(1, 2).contiguous()
return xv, xk
def update_kv(self, values_store, keys_store, batch_size, start_pos, seqlen):
self.v[:batch_size, :, start_pos : start_pos + seqlen, :] = values_store
self.k[:batch_size, :, :, start_pos : start_pos + seqlen, :] = keys_store
def roll_kv(self, roll_len, start_pos):
# Roll only the necessary part of the cache to the left
self.v[:, :, :-roll_len, :] = self.v[:, :, roll_len:, :]
self.k[:, :, :, :-roll_len, :] = self.k[:, :, :, roll_len:, :]
# Zero out the new part
self.v[:, :, -roll_len:, :] = 0
self.k[:, :, :, -roll_len:, :] = 0
return start_pos - roll_len
def to(self, device):
self.k = self.k.to(device)
self.v = self.v.to(device)