Doa-doa's picture
Upload folder using huggingface_hub
72268ee
import torch
import logging
from typing import List, Union
from datasets import load_dataset
def get_calib_dataset(data: Union[str, List[str]] = "pileval",
tokenizer=None, n_samples=512, block_size=512,
split="train", text_column="text"):
if isinstance(data, str):
if data == "pileval":
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
else:
dataset = load_dataset(data, split=split)
dataset = dataset.shuffle(seed=42)
elif isinstance(data, list):
dataset = [{text_column: text} for text in data]
else:
raise NotImplementedError(
"Either pass a string to a huggingface dataset or a list"
"that is preprocessed with one sample of text per element.")
samples = []
n_run = 0
for data in dataset:
line = data[text_column]
line = line.strip()
line_encoded = tokenizer.encode(line)
if len(line_encoded) > 512:
continue
sample = torch.tensor([line_encoded])
if sample.numel() == 0:
continue
samples.append(sample)
n_run += 1
if n_run == n_samples:
break
# now concatenate all samples and split according to block size
cat_samples = torch.cat(samples, dim=1)
n_split = cat_samples.shape[1] // block_size
logging.debug(f" * Split into {n_split} blocks")
return [cat_samples[:, i*block_size:(i+1)*block_size] for i in range(n_split)]