|
import torch |
|
import logging |
|
from typing import List, Union |
|
from datasets import load_dataset |
|
|
|
def get_calib_dataset(data: Union[str, List[str]] = "pileval", |
|
tokenizer=None, n_samples=512, block_size=512, |
|
split="train", text_column="text"): |
|
if isinstance(data, str): |
|
if data == "pileval": |
|
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation") |
|
else: |
|
dataset = load_dataset(data, split=split) |
|
|
|
dataset = dataset.shuffle(seed=42) |
|
|
|
elif isinstance(data, list): |
|
dataset = [{text_column: text} for text in data] |
|
else: |
|
raise NotImplementedError( |
|
"Either pass a string to a huggingface dataset or a list" |
|
"that is preprocessed with one sample of text per element.") |
|
|
|
samples = [] |
|
n_run = 0 |
|
for data in dataset: |
|
line = data[text_column] |
|
line = line.strip() |
|
line_encoded = tokenizer.encode(line) |
|
if len(line_encoded) > 512: |
|
continue |
|
sample = torch.tensor([line_encoded]) |
|
if sample.numel() == 0: |
|
continue |
|
samples.append(sample) |
|
n_run += 1 |
|
if n_run == n_samples: |
|
break |
|
|
|
cat_samples = torch.cat(samples, dim=1) |
|
n_split = cat_samples.shape[1] // block_size |
|
logging.debug(f" * Split into {n_split} blocks") |
|
return [cat_samples[:, i*block_size:(i+1)*block_size] for i in range(n_split)] |
|
|