grad / repositories /exllama /test_benchmark_inference.py
Doa-doa's picture
Upload folder using huggingface_hub
72268ee
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
from lora import ExLlamaLora
import perplexity
from perplexity import Perplexity
import time
import torch
import torch.nn.functional as F
import argparse
import json
import math
import sys
import os
import glob
import model_init
torch.cuda._lazy_init()
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.set_printoptions(precision = 10)
torch_devices = [f"cuda:{i}" for i in range(torch.cuda.device_count())]
cache = None
model = None
def begin():
global model, cache
if cache is None: cache = ExLlamaCache(model)
else: cache.current_seq_len = 0
def next_logits(input_ids, apply_lora, last_id_only = True, input_mask = None):
global model, cache
# n_logits = None
# a = 0
# while a < input_ids.shape[-1]:
# b = min(input_ids.shape[-1], a + 2048)
# n_logits = model.forward(input_ids[:, a:b], cache, last_id_only, lora = apply_lora, input_mask = input_mask)
# a = b
n_logits = model.forward(input_ids, cache, last_id_only, lora=apply_lora, input_mask=input_mask)
return n_logits
def tokenize(text):
global tokenizer
return tokenizer.encode(text)
def timer(name, func):
t = time.time()
ret = func()
t = time.time() - t
print(f" ** Time, {name}: {t:.2f} seconds")
return ret
mem_base = {}
mem_last = {}
for dev in torch_devices:
torch.cuda.reset_peak_memory_stats(dev)
mem_base[dev] = mem_last[dev] = torch.cuda.max_memory_allocated(dev)
def mem(name, total = False):
global mem_base, mem_last
res = f" ** VRAM, {name}: "
first = True
for device in torch_devices:
mem_c = torch.cuda.max_memory_allocated(device)
mem_this = mem_c - mem_last[device] if not total else mem_c - mem_base[device]
mem_last[device] = mem_c
if not first: res += " - "
first = False
res += f"[{device}] {mem_this / (1024 ** 2):,.2f} MB"
print(res)
# Parse arguments
parser = argparse.ArgumentParser(description = "Benchmark tests for ExLlama")
model_init.add_args(parser)
perplexity.add_args(parser)
parser.add_argument("-p", "--perf", action = "store_true", help = "Benchmark speed and VRAM usage")
parser.add_argument("-v", "--validate", action = "count", help = "Run validation check and generate some sample output; specify twice for a more thorough test")
parser.add_argument("-lora", "--lora", type = str, help = "Path to LoRA binary to use during benchmark")
parser.add_argument("-loracfg", "--lora_config", type = str, help = "Path to LoRA config to use during benchmark")
parser.add_argument("-ld", "--lora_dir", type = str, help = "Path to LoRA config and binary. to use during benchmark")
args = parser.parse_args()
model_init.post_parse(args)
perplexity.post_parse(args)
model_init.get_model_files(args)
# Paths
if args.lora_dir is not None:
args.lora_config = os.path.join(args.lora_dir, "adapter_config.json")
args.lora = os.path.join(args.lora_dir, "adapter_model.bin")
# Feedback
print_opts = []
if args.perf: print_opts.append("perf")
if args.validate: print_opts.append("validate")
if args.perplexity: print_opts.append("perplexity")
if args.perplexity_token: print_opts.append("perplexity_token")
model_init.print_options(args, print_opts)
# Globals
model_init.set_globals(args)
# Instantiate model
config = model_init.make_config(args)
model = timer("Load model", lambda: ExLlama(config))
tokenizer = timer("Load tokenizer", lambda: ExLlamaTokenizer(args.tokenizer))
model_init.print_stats(model)
torch.cuda.reset_peak_memory_stats("cuda")
mem("Model")
cache = ExLlamaCache(model)
mem("Cache")
# Load LoRA
lora = None
if args.lora:
print(f" -- LoRA config: {args.lora_config}")
print(f" -- Loading LoRA: {args.lora}")
if args.lora_config is None:
print(f" ## Error: please specify lora path to adapter_config.json")
sys.exit()
lora = ExLlamaLora(model, args.lora_config, args.lora)
if lora.bias_ignored:
print(f" !! Warning: LoRA zero bias ignored")
# Test sequence
gen_tokens = 128
max_seq_len = args.length
ids = torch.randint(0, 31999, (1, max_seq_len - gen_tokens)).cuda()
# Benchmark memory and performance
if args.perf:
# Warming up apparently makes a huge difference
for i in range(1, 3):
print(f" -- Warmup pass {i}...")
begin()
logits = timer("Warmup", lambda: next_logits(ids, lora))
# Do the actual benchmark
begin()
t = time.time()
print(" -- Inference, first pass.")
logits = timer("Inference", lambda: next_logits(ids, lora))
t = time.time() - t
print(f" ** Speed: {ids.shape[-1] / t:.2f} tokens/second")
for j in range(2):
t = time.time()
print(f" -- Generating {gen_tokens} tokens, {ids.shape[-1]} token prompt...")
for i in range(gen_tokens):
logits = logits[0, -1, :]
token = torch.argmax(logits)
next_id = token.unsqueeze(0).unsqueeze(0)
logits = next_logits(next_id, lora)
t = time.time() - t
print(f" ** Speed: {gen_tokens / t:.2f} tokens/second")
ids = ids[:, :4]
cache.current_seq_len = 4
mem("Inference")
mem("Total", total = True)
# Benchmark perplexity
if args.perplexity:
ppl = Perplexity(args.perplexity, model, cache, tokenizer)
print(" -- Loading dataset...")
ppl.load(dataset_path = args.perplexity_dataset,
chunk_size = args.perplexity_chunk_size,
chunk_truncate = args.perplexity_chunk_truncate,
overlap = args.perplexity_chunk_overlap,
minlength = args.perplexity_chunk_min,
json_key = args.perplexity_json_key)
begin()
ppl.test(args.perplexity_chunk_num,
lora = lora,
ppl_token = args.perplexity_token)
# Validate file
if args.validate:
ppl = Perplexity(args.perplexity, model, cache, tokenizer)
ppl.load(dataset_path = "datasets/wikitext2_val_sample.jsonl",
chunk_size = 2048,
chunk_truncate = 2048,
overlap = 0,
minlength = 50,
json_key = "text")
# Short perplexity tests in switched and quant mode, should produce roughly equal results
begin()
ppl.cache.zero()
model.config.matmul_recons_thd = 1
ppl.test(8, lora = lora, tag = " (reconstruct)")
ppl.cache.zero()
model.config.matmul_recons_thd = 0
ppl.test(8, lora = lora, tag = " (quant, token)", ppl_token = True)
# Do a short, easy topk=1 completion to see if we're generating garbage. Should run in switched mode
# for the prompt and quant for individual tokens
model.config.matmul_recons_thd = 4
generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings.top_k = 1
generator.lora = lora
text = generator.generate_simple("To be or not to be, that is the", max_new_tokens = 20 * args.validate)
print(f" ** Generation: {repr(text)}")
if args.validate > 1:
# Test batched generation
bsz = 8
gen_len = 20
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
# Bigger cache for the batch
del cache
cache = ExLlamaCache(model, batch_size = bsz)
# Create tokenized batch and attention mask
identical_batch_prompt = "When you have eliminated the impossible, whatever remains,"
continuations = [
" must be considered",
" ought to be",
" (and some scholars say this is",
" however improbable, is a banana.",
]
prompts = [identical_batch_prompt] * (bsz - len(continuations))
for cont in continuations:
prompts.append(identical_batch_prompt + cont)
ids = tokenizer.encode(prompts)
assert ids.shape[1] < model.config.max_seq_len, f"Max length {ids.shape[1]} exceeds model limit {model.config.max_seq_len}"
mask = ids.ne(tokenizer.pad_token_id)
# Batched generation with greedy sampling
sequence = torch.empty((bsz, 0), dtype = torch.long, device = "cpu")
logits = next_logits(ids, lora, input_mask = mask)
for i in range(gen_len):
logits = logits[:, -1, :]
id_per_batch = torch.argmax(logits, dim=-1)
assert id_per_batch.shape == (bsz,), f"{id_per_batch.shape} != {(bsz,)}"
next_id_per_batch = id_per_batch.unsqueeze(-1)
sequence = torch.cat((sequence, next_id_per_batch), dim = -1)
logits = next_logits(next_id_per_batch, lora)
# Print output batch
print(f"\n ** Batching sanity check: 1-{bsz - len(continuations)} should be identical. All should be reasonable for the model you're using.\n")
outputs = tokenizer.decode(sequence)
for b in range(bsz):
print(f"{b + 1} {repr(prompts[b])} -> {repr(outputs[b])}")
# TODO Save the logits and then rerun each prompt with a batch size of 1, same input. The logits should be identical.