File size: 1,060 Bytes
0134561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfad469
0134561
 
 
45792b9
 
 
5a95511
 
0134561
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from joblib import load
import numpy as np

# Load the trained model
model = load("ML_Model_CallCorr.joblib")

def predict_corrected_calcium(total_calcium, total_protein, albumin):
    # Calculate Albumin to Total Protein Ratio
    atr = albumin / total_protein
    
    # Predict the actual calcium value using the model
    predicted_value = model.predict([[total_calcium, atr]])[0]
    
    # Return the result string
    return f"{predicted_value:.2f}.\n\nThe model has a MSE of 0.06, MAD of 0.08 and R-squared of 0.931."

# Define the Gradio interface
interface = gr.Interface(fn=predict_corrected_calcium, 
                         inputs=[gr.inputs.Number(label="Total Calcium"),
                                 gr.inputs.Number(label="Total Protein"),
                                 gr.inputs.Number(label="Albumin")],
                         outputs=gr.outputs.Textbox(label="Status of Actual Hypocalcemia "),
                         title="Artificial Neural Network Assisted True Hypocalcemia Prediction")

interface.launch()