Spaces:
Sleeping
Sleeping
import gradio as gr | |
from diffusers import DDPMPipeline | |
import torch | |
# Load model | |
pipe = DDPMPipeline.from_pretrained("Docty/pipecorrode", torch_dtype=torch.float16) | |
pipe.to("cuda" if torch.cuda.is_available() else "cpu") | |
# Generation function | |
def generate_images(num_images: int = 1, steps: int = 50): | |
output = pipe(num_inference_steps=steps, batch_size=num_images) | |
return output.images | |
# Gradio Interface | |
gr.Interface( | |
fn=generate_images, | |
inputs=[ | |
gr.Slider(1, 8, step=1, label="Number of Images"), | |
gr.Slider(10, 100, step=10, label="Sampling Steps"), | |
], | |
outputs=gr.Gallery(label="Generated Images"), | |
title="Unconditional Diffusion Generator" | |
).launch() | |