Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel | |
import dask.dataframe as dd | |
from datasets import load_dataset | |
import torch | |
# Load models and tokenizer | |
def load_models(): | |
# Load model 1 | |
model_1 = AutoModel.from_pretrained("Canstralian/RedTeamAI") | |
# Load model 2 | |
model_2 = AutoModel.from_pretrained("mradermacher/BashCopilot-6B-preview-GGUF") | |
# Load tokenizer and sequence classification model | |
tokenizer = AutoTokenizer.from_pretrained("bash1130/bert-base-finetuned-ynat") | |
model_3 = AutoModelForSequenceClassification.from_pretrained("bash1130/bert-base-finetuned-ynat") | |
return model_1, model_2, tokenizer, model_3 | |
# Load dataset using Dask | |
def load_data(): | |
# Example of loading a dataset using Dask (adjust paths as necessary) | |
splits = {'creative_content': 'data/creative_content-00000-of-00001.parquet'} | |
df = dd.read_parquet("hf://datasets/microsoft/orca-agentinstruct-1M-v1/" + splits["creative_content"]) | |
return df.head() | |
# Function for model inference | |
def infer_model(input_text, model_type): | |
# Choose the model based on the input (you can add more models or conditions as needed) | |
if model_type == 'RedTeamAI': | |
model = models[0] | |
elif model_type == 'BashCopilot': | |
model = models[1] | |
elif model_type == 'BertModel': | |
model = models[3] | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) | |
outputs = model(**inputs) | |
return outputs.logits.argmax(dim=-1).item() | |
else: | |
return "Model type not recognized." | |
# If you need to generate outputs based on the models directly, you can use: | |
# outputs = model.generate(input_text) or other inference methods depending on the model. | |
return f"Model {model_type} inference not implemented yet." | |
# Gradio Interface setup | |
def build_interface(): | |
# Load models and data | |
model_1, model_2, tokenizer, model_3 = load_models() | |
global models | |
models = [model_1, model_2, tokenizer, model_3] | |
# Load the dataset (example function, you can add more functionality) | |
data_preview = load_data() | |
print(f"Dataset preview: {data_preview}") | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chagrin AI - Model Inference & Dataset Explorer") | |
# Model selection dropdown | |
model_type = gr.Dropdown(choices=["RedTeamAI", "BashCopilot", "BertModel"], label="Choose Model") | |
# Textbox for user input | |
input_text = gr.Textbox(label="Enter your input text") | |
# Button to trigger inference | |
result = gr.Textbox(label="Inference Result") | |
submit_btn = gr.Button("Run Inference") | |
submit_btn.click(infer_model, inputs=[input_text, model_type], outputs=result) | |
demo.launch() | |
# Run the app | |
if __name__ == "__main__": | |
build_interface() | |