Imgtoobj / app.py
Doubleupai's picture
Create app.py
aaa0bc6 verified
# Install required libraries if not already installed
# !pip install gradio opencv-python torch torchvision
import gradio as gr
import cv2
import torch
from torchvision import models, transforms
from PIL import Image
# Load the pre-trained Faster R-CNN model
model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
# Define the transformation for the input image
transform = transforms.Compose([
transforms.ToTensor()
])
# Function to perform object detection
def detect_objects(input_image):
# Convert the Gradio image to PIL Image
image_pil = Image.fromarray(input_image.astype('uint8'), 'RGB')
# Apply transformations
image = transform(image_pil)
image = image.unsqueeze(0) # Add batch dimension
# Get predictions
with torch.no_grad():
predictions = model(image)
# Process predictions
boxes = predictions[0]['boxes'].detach().numpy()
labels = predictions[0]['labels'].detach().numpy()
scores = predictions[0]['scores'].detach().numpy()
# Convert PIL Image to OpenCV format
image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
# Draw bounding boxes on the image
for box, label, score in zip(boxes, labels, scores):
if score < 0.5:
continue # Skip detections with low confidence
x1, y1, x2, y2 = box.astype(int)
cv2.rectangle(image_cv, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image_cv, f'{label}: {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Convert back to RGB for Gradio
image_rgb = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
return image_rgb
# Create the Gradio interface
app = gr.Interface(
fn=detect_objects,
inputs="image",
outputs="image",
title="Object Detection using Faster R-CNN",
description="Upload an image and the model will detect objects and draw bounding boxes around them."
)
# Launch the app
app.launch()